Tree approximation and optimal encoding

被引:86
作者
Cohen, A
Dahmen, W
Daubechies, I
DeVore, R
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
[2] Rhein Westfal TH Aachen, Inst Geomet & Prakt Math, D-52056 Aachen, Germany
[3] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[4] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
compression; n-term approximation; encoding; Kolmogorov entropy;
D O I
10.1006/acha.2001.0336
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tree approximation is a new form of nonlinear approximation which appears naturally in some applications such as image processing and adaptive numerical methods. It is somewhat more restrictive than the usual n-term approximation. We show that the restrictions of tree approximation cost little in terms of rates of approximation. We then use that result to design encoders for compression. These encoders are universal (they apply to general functions) and progressive (increasing accuracy is obtained by sending bit stream increments). We show optimality of the encoders in the sense that they provide upper estimates for the Kolmogorov entropy of Besov balls. (C) 2001 Academic Press.
引用
收藏
页码:192 / 226
页数:35
相关论文
共 23 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]   An adaptive compression algorithm in Besov spaces [J].
Birgé, L ;
Massart, P .
CONSTRUCTIVE APPROXIMATION, 2000, 16 (01) :1-36
[3]  
BIRMAN MS, 1967, MATH USSR SB, V2, P295, DOI [10.1070/SM1967v002n03ABEH002343, DOI 10.1070/SM1967V002N03ABEH002343]
[4]  
CANDES E, 2000, CURVE SURFACE FIHING
[5]   Restricted nonlinear approximation [J].
Cohen, A ;
DeVore, RA ;
Hochmuth, R .
CONSTRUCTIVE APPROXIMATION, 2000, 16 (01) :85-113
[6]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[7]  
COHEN A, IN PRESS IEEE T INF
[8]   Stable multiscale bases and local error estimation for elliptic problems [J].
Dahlke, S ;
Dahmen, W ;
Hochmuth, R ;
Schneider, R .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (01) :21-47
[9]  
DAHLKE S, 1997, MULTISCALE WAVELET M, P237
[10]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996