Stable multiscale bases and local error estimation for elliptic problems

被引:68
作者
Dahlke, S
Dahmen, W
Hochmuth, R
Schneider, R
机构
[1] RHEIN WESTFAL TH AACHEN,INST GEOMETRIE & PRAKT MATH,D-52056 AACHEN,GERMANY
[2] FREE UNIV BERLIN,INST MATH 1,FACHBEREICH MATH & INFORMAT,D-14195 BERLIN,GERMANY
[3] TH DARMSTADT,FACHBEREICH MATH,D-64289 DARMSTADT,GERMANY
关键词
stable multiscale bases; norm equivalences; elliptic operator equations; Galerkin schemes; a-posteriori error estimators; convergence of adaptive schemes;
D O I
10.1016/S0168-9274(96)00060-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the analysis of adaptive multiscale techniques for the solution of a wide class of elliptic operator equations covering, in principle, singular integral as well as partial differential operators. The central objective is to derive reliable and efficient a-posteriori error estimators for Galerkin schemes which are based on stable multiscale bases. It is shown that the locality of corresponding multiresolution processes combined with certain norm equivalences involving weighted sequence norms of wavelet coefficients leads to adaptive space refinement strategies which are guaranteed to converge in a wide range of cases, again including operators of negative order.
引用
收藏
页码:21 / 47
页数:27
相关论文
共 38 条
[1]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[2]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[3]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[4]  
Bastian P., 1994, ADAPTIVE METHODS ALG, P17
[5]  
BERTOLUZZA S, 1995, APPL MATH LETT, V8
[6]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[7]   A posteriori error estimates for elliptic problems in two and three space dimensions [J].
Bornemann, FA ;
Erdmann, B ;
Kornhuber, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1188-1204
[8]   Local decomposition of refinable spaces and wavelets [J].
Carnicer, JM ;
Dahmen, W ;
Pena, JM .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (02) :127-153
[9]   Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1996, 65 (213) :69-84
[10]  
CARSTENSEN C, 1993, ADAPTIVE BOUNDARY EL