Chaos in M(atrix) theory

被引:34
作者
Aref'eva, IY
Medvedev, PB
Rytchkov, OA
Volovich, IV
机构
[1] VA Steklov Math Inst, Moscow 117966, Russia
[2] State Atom Energy Commiss, Inst Theoret & Expt Phys, Moscow 117218, Russia
[3] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119899, Russia
关键词
D O I
10.1016/S0960-0779(98)00159-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the classical and quantum dynamics in M(atrix) theory. Using a simple ansatz we show that a classical trajectory exhibits a chaotic motion. We argue that the holographic feature of M(atrix) theory is related with the repulsive feature of energy eigenvalues in quantum chaotic system. Chaotic dynamics in N = 2 supersymmetric Yang-Mills theory is also discussed. We demonstrate that after the separation of "slow" and "fast" modes there is a singular contribution from the "slow" modes to the Hamiltonian of the "fast" modes. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:213 / 223
页数:11
相关论文
共 39 条
[31]   Quantum chaos in a Yang-Mills-Higgs system [J].
Salasnich, L .
MODERN PHYSICS LETTERS A, 1997, 12 (20) :1473-1480
[32]   MONOPOLES, DUALITY AND CHIRAL-SYMMETRY BREAKING IN N=2 SUPERSYMMETRIC QCD [J].
SEIBERG, N ;
WITTEN, E .
NUCLEAR PHYSICS B, 1994, 431 (03) :484-550
[33]   SOME QUANTUM OPERATORS WITH DISCRETE SPECTRUM BUT CLASSICALLY CONTINUOUS-SPECTRUM [J].
SIMON, B .
ANNALS OF PHYSICS, 1983, 146 (01) :209-220
[34]  
SINAI YG, 1996, INTRO ERGODIC THEORY
[35]  
SREDNICKI M, CONDMAT9605127
[36]  
Susskind L., HEPTH9704080
[37]  
VOLOVICH IV, HEPTH9608137
[38]   STRING THEORY DYNAMICS IN VARIOUS DIMENSIONS [J].
WITTEN, E .
NUCLEAR PHYSICS B, 1995, 443 (1-2) :85-126
[39]  
ZASLAVSKII GM, 1984, STOCHASTICITY DYNAMI