New Steady-State Quiescent High-Confinement Plasma in an Experimental Advanced Superconducting Tokamak

被引:116
作者
Hu, J. S. [1 ]
Sun, Z. [1 ]
Guo, H. Y. [1 ,2 ]
Li, J. G. [1 ]
Wan, B. N. [1 ]
Wang, H. Q. [1 ]
Ding, S. Y. [1 ]
Xu, G. S. [1 ]
Liang, Y. F. [1 ,3 ]
Mansfield, D. K. [4 ]
Maingi, R. [4 ]
Zou, X. L. [5 ]
Wang, L. [1 ]
Ren, J. [1 ]
Zuo, G. Z. [1 ]
Zhang, L. [1 ]
Duan, Y. M. [1 ]
Shi, T. H. [1 ]
Hu, L. Q. [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
[2] Gen Atom, San Diego, CA 92186 USA
[3] Forschungszentrum Julich, Assoc EURATOM FZ, D-52425 Julich, Germany
[4] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA
[5] CEA, IRFM, F-13108 St Paul Les Durance, France
关键词
MODES; REGIME;
D O I
10.1103/PhysRevLett.114.055001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Quiescent H-Mode Plasmas with Strong Edge Rotation in the Cocurrent Direction [J].
Burrell, K. H. ;
Osborne, T. H. ;
Snyder, P. B. ;
West, W. P. ;
Fenstermacher, M. E. ;
Groebner, R. J. ;
Gohil, P. ;
Leonard, A. W. ;
Solomon, W. M. .
PHYSICAL REVIEW LETTERS, 2009, 102 (15)
[2]   Edge transport and turbulence reduction with lithium coated plasma facing components in the National Spherical Torus Experiment [J].
Canik, J. M. ;
Maingi, R. ;
Kubota, S. ;
Ren, Y. ;
Bell, R. E. ;
Callen, J. D. ;
Guttenfelder, W. ;
Kugel, H. W. ;
LeBlanc, B. P. ;
Osborne, T. H. ;
Soukhanovskii, V. A. .
PHYSICS OF PLASMAS, 2011, 18 (05)
[3]   A review of models for ELMs [J].
Connor, JW .
PLASMA PHYSICS AND CONTROLLED FUSION, 1998, 40 (02) :191-213
[4]   Chapter 2: Plasma confinement and transport [J].
Department of Electrical Engineering, PSTI, University of California, Los Angeles, CA, United States ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 .
Nucl Fusion, 2007, 6 (S18-S127) :S18-S127
[5]   Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary [J].
Evans, TE ;
Moyer, RA ;
Thomas, PR ;
Watkins, JG ;
Osborne, TH ;
Boedo, JA ;
Doyle, EJ ;
Fenstermacher, ME ;
Finken, KH ;
Groebner, RJ ;
Groth, M ;
Harris, JH ;
La Haye, RJ ;
Lasnier, CJ ;
Masuzaki, S ;
Ohyabu, N ;
Pretty, DG ;
Rhodes, TL ;
Reimerdes, H ;
Rudakov, DL ;
Schaffer, MJ ;
Wang, G ;
Zeng, L .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :235003-1
[6]   Quiescent double barrier regime in the DIII-D tokamak [J].
Greenfield, CM ;
Burrell, KH ;
DeBoo, JC ;
Doyle, EJ ;
Stallard, BW ;
Synakowski, EJ ;
Fenzi, C ;
Gohil, P ;
Groebner, RJ ;
Lao, LL ;
Makowski, MA ;
McKee, GR ;
Moyer, RA ;
Rettig, CL ;
Rhodes, TL ;
Pinsker, RI ;
Staebler, GM ;
West, WP .
PHYSICAL REVIEW LETTERS, 2001, 86 (20) :4544-4547
[7]   Characterization of enhanced Dα high-confinement modes in Alcator C-mod [J].
Greenwald, M ;
Boivin, R ;
Bonoli, P ;
Budny, R ;
Fiore, C ;
Goetz, J ;
Granetz, R ;
Hubbard, A ;
Hutchinson, I ;
Irby, J ;
LaBombard, B ;
Lin, Y ;
Lipschultz, B ;
Marmar, E ;
Mazurenko, A ;
Mossessian, D ;
Pedersen, TS ;
Pitcher, CS ;
Porkolab, M ;
Rice, J ;
Rowan, W ;
Snipes, J ;
Schilling, G ;
Takase, Y ;
Terry, J ;
Wolfe, S ;
Weaver, J ;
Welch, B ;
Wukitch, S .
PHYSICS OF PLASMAS, 1999, 6 (05) :1943-1949
[8]   Suppression of Edge Localized Modes in High-Confinement KSTAR Plasmas by Nonaxisymmetric Magnetic Perturbations [J].
Jeon, Y. M. ;
Park, J. -K. ;
Yoon, S. W. ;
Ko, W. H. ;
Lee, S. G. ;
Lee, K. D. ;
Yun, G. S. ;
Nam, Y. U. ;
Kim, W. C. ;
Kwak, Jong-Gu ;
Lee, K. S. ;
Kim, H. K. ;
Yang, H. L. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[9]   The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment [J].
Kugel, H. W. ;
Bell, M. G. ;
Ahn, J. -W. ;
Allain, J. P. ;
Bell, R. ;
Boedo, J. ;
Bush, C. ;
Gates, D. ;
Gray, T. ;
Kaye, S. ;
Kaita, R. ;
LeBlanc, B. ;
Maingi, R. ;
Majeski, R. ;
Mansfield, D. ;
Menard, J. ;
Mueller, D. ;
Ono, M. ;
Paul, S. ;
Raman, R. ;
Roquemore, A. L. ;
Ross, P. W. ;
Sabbagh, S. ;
Schneider, H. ;
Skinner, C. H. ;
Soukhanovskii, V. ;
Stevenson, T. ;
Timberlake, J. ;
Wampler, W. R. ;
Zakharov, L. .
PHYSICS OF PLASMAS, 2008, 15 (05)
[10]   ELM control strategies and tools: status and potential for ITER [J].
Lang, P. T. ;
Loarte, A. ;
Saibene, G. ;
Baylor, L. R. ;
Becoulet, M. ;
Cavinato, M. ;
Clement-Lorenzo, S. ;
Daly, E. ;
Evans, T. E. ;
Fenstermacher, M. E. ;
Gribov, Y. ;
Horton, L. D. ;
Lowry, C. ;
Martin, Y. ;
Neubauer, O. ;
Oyama, N. ;
Schaffer, M. J. ;
Stork, D. ;
Suttrop, W. ;
Thomas, P. ;
Tran, M. ;
Wilson, H. R. ;
Kavin, A. ;
Schmitz, O. .
NUCLEAR FUSION, 2013, 53 (04)