Neural stem and progenitor cells shorten S-phase on commitment to neuron production

被引:285
作者
Arai, Yoko [1 ]
Pulvers, Jeremy N. [1 ]
Haffner, Christiane [1 ]
Schilling, Britta [1 ]
Nuesslein, Ina [1 ]
Calegari, Federico [2 ]
Huttner, Wieland B. [1 ]
机构
[1] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[2] Tech Univ Dresden, Ctr Regenerat Therapies, D-01307 Dresden, Germany
来源
NATURE COMMUNICATIONS | 2011年 / 2卷
关键词
MURINE CEREBRAL WALL; RADIAL GLIA; DNA-REPAIR; NERVOUS-SYSTEM; DEVELOPING NEOCORTEX; BASAL PROGENITORS; BRAIN-DEVELOPMENT; NUCLEAR ANTIGEN; CYCLE CONTROL; C-MYC;
D O I
10.1038/ncomms1155
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During mammalian cerebral cortex development, the G1-phase of the cell cycle is known to lengthen, but it has been unclear which neural stem and progenitor cells are affected. In this paper, we develop a novel approach to determine cell-cycle parameters in specific classes of neural stem and progenitor cells, identified by molecular markers rather than location. We found that G1 lengthening was associated with the transition from stem cell-like apical progenitors to fate-restricted basal (intermediate) progenitors. Unexpectedly, expanding apical and basal progenitors exhibit a substantially longer S-phase than apical and basal progenitors committed to neuron production. Comparative genome-wide gene expression analysis of expanding versus committed progenitor cells revealed changes in key factors of cell-cycle regulation, DNA replication and repair and chromatin remodelling. Our findings suggest that expanding neural stem and progenitor cells invest more time during S-phase into quality control of replicated DNA than those committed to neuron production.
引用
收藏
页数:12
相关论文
共 58 条
[1]   The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone [J].
Arnold, Sebastian J. ;
Huang, Guo-Jen ;
Cheung, Amanda F. P. ;
Era, Takumi ;
Nishikawa, Shin-Ichi ;
Bikoff, Elizabeth K. ;
Molnar, Zoltan ;
Robertson, Elizabeth J. ;
Groszer, Matthias .
GENES & DEVELOPMENT, 2008, 22 (18) :2479-2484
[2]   Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny [J].
Attardo, Alessio ;
Calegari, Federico ;
Haubensak, Wulf ;
Wilsch-Braeuninger, Michaela ;
Huttner, Wieland B. .
PLOS ONE, 2008, 3 (06)
[3]   EXISTENCE OF 2 POPULATIONS OF CYCLIN PROLIFERATING CELL NUCLEAR ANTIGEN DURING THE CELL-CYCLE - ASSOCIATION WITH DNA-REPLICATION SITES [J].
BRAVO, R ;
MACDONALDBRAVO, H .
JOURNAL OF CELL BIOLOGY, 1987, 105 (04) :1549-1554
[4]   Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis [J].
Busino, L ;
Chiesa, M ;
Draetta, GF ;
Donzelli, M .
ONCOGENE, 2004, 23 (11) :2050-2056
[5]   An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis [J].
Calegari, F ;
Huttner, WB .
JOURNAL OF CELL SCIENCE, 2003, 116 (24) :4947-4955
[6]   Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development [J].
Calegari, F ;
Haubensak, W ;
Haffner, C ;
Huttner, WB .
JOURNAL OF NEUROSCIENCE, 2005, 25 (28) :6533-6538
[7]   NUMBERS, TIME AND NEOCORTICAL NEURONOGENESIS - A GENERAL DEVELOPMENTAL AND EVOLUTIONARY MODEL [J].
CAVINESS, VS ;
TAKAHASHI, T ;
NOWAKOWSKI, RS .
TRENDS IN NEUROSCIENCES, 1995, 18 (09) :379-383
[8]  
DEGREGORI J, 1995, MOL CELL BIOL, V15, P4215
[9]   Cell-cycle control and cortical development [J].
Dehay, Colette ;
Kennedy, Henry .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (06) :438-450
[10]   Automated analysis of time-lapse fluorescence microscopy images: from live cell images to intracellular foci [J].
Dzyubachyk, Oleh ;
Essers, Jeroen ;
van Cappellen, Wiggert A. ;
Baldeyron, Celine ;
Inagaki, Akiko ;
Niessen, Wiro J. ;
Meijering, Erik .
BIOINFORMATICS, 2010, 26 (19) :2424-2430