On linearisable noisy systems

被引:5
作者
Argyris, J [1 ]
Andreadis, I [1 ]
机构
[1] Univ Stuttgart, Inst Comp Applicat 1, D-70569 Stuttgart, Germany
关键词
D O I
10.1016/S0960-0779(97)00171-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we elaborate a study of the influence of the alternative mathematical schemes of noise introduced by a recent paper of Argyris et al. in this journal and discuss their influence on the correlation dimension and on the largest Lyapunov exponent pf attractors of dynamic systems arising in either a discrete or a continuous in time formulation. The concept of a linearizable noisy system is also introduced. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:895 / 899
页数:5
相关论文
共 14 条
[1]   On the influence of noise on the largest Lyapunov exponent of attractors of stochastic dynamic systems [J].
Argyris, J ;
Andreadis, I .
CHAOS SOLITONS & FRACTALS, 1998, 9 (06) :959-963
[2]   The influence of noise on the correlation dimension of chaotic attractors [J].
Argyris, J ;
Andreadis, I ;
Pavlos, G ;
Athanasiou, M .
CHAOS SOLITONS & FRACTALS, 1998, 9 (03) :343-361
[3]   On the influence of noise on the largest Lyapunov exponent and on the geometric structure of attractors [J].
Argyris, J ;
Andreadis, I ;
Pavlos, G ;
Athanasiou, M .
CHAOS SOLITONS & FRACTALS, 1998, 9 (06) :947-958
[4]  
ARGYRIS J, IN PRESS CHAOS SOLIT
[5]  
Argyris JH, 1994, EXPLORATION CHAOS
[6]  
CHENG B, 1992, J ROY STAT SOC B MET, V54, P427
[7]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[8]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208
[9]  
Lasota A., 1994, Applied Mathematical Sciences, V2nd
[10]   Effects of noise on chaotic one-dimensional maps [J].
Malescio, G .
PHYSICS LETTERS A, 1996, 218 (1-2) :25-29