Testing when a parameter is on the boundary of the maintained hypothesis

被引:213
作者
Andrews, DWK [1 ]
机构
[1] Yale Univ, Cowles Fdn Res Econ, New Haven, CT 06520 USA
关键词
asymptotic distribution; boundary; GARCH model; inequality restrictions; random coefficients regression;
D O I
10.1111/1468-0262.00210
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers testing problems where several of the standard regularity conditions fail to hold. We consider the case where (i) parameter vectors in the null hypothesis may lie on the boundary of the: maintained hypothesis and (ii) there mas be a nuisance parameter that appears under the alternative hypothesis, but not under the null. The paper establishes the asymptotic null and local alternative distributions of quasi-likelihood ratio, rescaled quasi-likelihood ratio, Wald, and score tests in this case. The results apply to tests based on a wide variety of extremum estimators and apply to a wide variety of models. Examples treated in the paper are: (i) tests of the null hypothesis of no conditional heteroskedasticity in a GARCH(1,1) regression model and (ii) tests of the null hypothesis that some random coefficients have variances equal to zero in a random coefficients regression model with (possibly) correlated random coefficients.
引用
收藏
页码:683 / 734
页数:52
相关论文
共 36 条
[11]  
Bollerslev T, 1994, Handbook of econometrics, V4, P2959, DOI [10.1016/S1573-4412(05)80018-2, DOI 10.1016/S1573-4412(05)80018-2]
[12]  
BROOKS RD, 1994, PAKISTAN J STAT, V10, P301
[13]  
CHANT D, 1974, BIOMETRIKA, V61, P291, DOI 10.2307/2334357
[14]   ON THE DISTRIBUTION OF THE LIKELIHOOD RATIO [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (03) :573-578
[15]   HYPOTHESIS TESTING WHEN A NUISANCE PARAMETER IS PRESENT ONLY UNDER ALTERNATIVE [J].
DAVIES, RB .
BIOMETRIKA, 1977, 64 (02) :247-254
[16]   HYPOTHESIS-TESTING WHEN A NUISANCE PARAMETER IS PRESENT ONLY UNDER THE ALTERNATIVE [J].
DAVIES, RB .
BIOMETRIKA, 1987, 74 (01) :33-43
[17]   ON THE ASYMPTOTICS OF CONSTRAINED M-ESTIMATION [J].
GEYER, CJ .
ANNALS OF STATISTICS, 1994, 22 (04) :1993-2010
[18]   LIKELIHOOD RATIO TEST, WALD TEST, AND KUHN-TUCKER TEST IN LINEAR-MODELS WITH INEQUALITY CONSTRAINTS ON THE REGRESSION PARAMETERS [J].
GOURIEROUX, C ;
HOLLY, A ;
MONFORT, A .
ECONOMETRICA, 1982, 50 (01) :63-80
[19]   Inference when a nuisance parameter is not identified under the null hypothesis [J].
Hansen, BE .
ECONOMETRICA, 1996, 64 (02) :413-430
[20]   CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE - DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES [J].
HAUSMAN, JA ;
WISE, DA .
ECONOMETRICA, 1978, 46 (02) :403-426