共 64 条
Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism
被引:212
作者:
Chang, Roger L.
[2
]
Ghamsari, Lila
[3
,4
,5
]
Manichaikul, Ani
[6
]
Hom, Erik F. Y.
[7
]
Balaji, Santhanam
[3
,4
,5
]
Fu, Weiqi
[8
]
Shen, Yun
[3
,4
,5
]
Hao, Tong
[3
,4
,5
]
Palsson, Bernhard O.
[2
]
Salehi-Ashtiani, Kourosh
[1
,3
,4
,5
,9
]
Papin, Jason A.
[6
]
机构:
[1] New York Univ Abu Dhabi, Abu Dhabi, U Arab Emirates
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[3] Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Dept Genet, Boston, MA USA
[6] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22908 USA
[7] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[8] Univ Iceland, Ctr Syst Biol, Reykjavik, Iceland
[9] NYU, Dept Biol, Ctr Genom & Syst Biol, New York, NY 10003 USA
基金:
美国国家科学基金会;
关键词:
Chlamydomonas reinhardtii;
lipid metabolism;
metabolic engineering;
photobioreactor;
FLUX BALANCE ANALYSIS;
ESCHERICHIA-COLI;
PROTOCHLOROPHYLLIDE REDUCTASE;
CARBONIC-ANHYDRASE;
FATTY-ACIDS;
REINHARDTII;
MODELS;
MUTANT;
BIOSYNTHESIS;
EFFICIENCY;
D O I:
10.1038/msb.2011.52
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Metabolic network reconstruction encompasses existing knowledge about an organism's metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. Molecular Systems Biology 7: 518; published online 2 August 2011; doi:10.1038/msb.2011.52
引用
收藏
页数:13
相关论文