Heat diffusion anisotropy in dendritic growth: phase field simulations and experiments in liquid crystals

被引:18
作者
Gonzalez-Cinca, R
Ramirez-Piscina, L
Casademunt, J
Hernandez-Machado, A
Toth-Katona, T
Borzsonyi, T
Buka, A
机构
[1] Univ Politecn Catalunya, Dept Fis Aplicada, E-08034 Barcelona, Spain
[2] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain
[3] Hungarian Acad Sci, Solid State Phys Res Inst, H-1525 Budapest, Hungary
关键词
dendrites; anisotropy; liquid crystals; phase held; interfacial instability;
D O I
10.1016/S0022-0248(98)00505-3
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
An anisotropic heat diffusion coefficient is introduced in order to study some interfacial growth phenomena. This anisotropy has been incorporated in a phase held model which has been studied numerically to reproduce some fundamental solidification situations (needle crystal growth) as well as the dynamics of a nematic-smectic-B interface. As a general result, we find that dendrites grow faster in the lower heat diffusion direction. Simulation results are compared with experiments with remarkable qualitative agreement. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:712 / 719
页数:8
相关论文
共 21 条
[11]  
Hurle D. T. J., 1993, HDB CRYSTAL GROWTH B, V1B
[12]   Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics [J].
Karma, A ;
Rappel, WJ .
PHYSICAL REVIEW E, 1996, 53 (04) :R3017-R3020
[13]   MODELING AND NUMERICAL SIMULATIONS OF DENDRITIC CRYSTAL-GROWTH [J].
KOBAYASHI, R .
PHYSICA D, 1993, 63 (3-4) :410-423
[14]  
KRUGER GJ, 1982, PHYS REP, V82, P231
[15]   PHASE-FIELD MODELS FOR ANISOTROPIC INTERFACES [J].
MCFADDEN, GB ;
WHEELER, AA ;
BRAUN, RJ ;
CORIELL, SR ;
SEKERKA, RF .
PHYSICAL REVIEW E, 1993, 48 (03) :2016-2024
[16]   ORIGIN OF THERMAL-CONDUCTIVITY ANISOTROPY IN LIQUID-CRYSTALLINE PHASES [J].
RONDELEZ, F ;
URBACH, W ;
HERVET, H .
PHYSICAL REVIEW LETTERS, 1978, 41 (15) :1058-1062
[17]   Pattern formation during mesophase growth in a homologous series [J].
TothKatona, T ;
Borzsonyi, T ;
Varadi, Z ;
Szabon, J ;
Buka, A ;
GonzalezCinca, R ;
RamirezPiscina, L ;
Casademunt, J ;
HernandezMachado, A .
PHYSICAL REVIEW E, 1996, 54 (02) :1574-1583
[18]   PATTERN MORPHOLOGIES IN ZINC ELECTRODEPOSITION [J].
TRIGUEROS, PP ;
CLARET, J ;
MAS, F ;
SAGUES, F .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 312 (1-2) :219-235
[19]   THERMODYNAMICALLY-CONSISTENT PHASE-FIELD MODELS FOR SOLIDIFICATION [J].
WANG, SL ;
SEKERKA, RF ;
WHEELER, AA ;
MURRAY, BT ;
CORIELL, SR ;
BRAUN, RJ ;
MCFADDEN, GB .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 69 (1-2) :189-200
[20]   COMPUTATION OF DENDRITES USING A PHASE FIELD MODEL [J].
WHEELER, AA ;
MURRAY, BT ;
SCHAEFER, RJ .
PHYSICA D, 1993, 66 (1-2) :243-262