Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not

被引:319
作者
Radin, Maxwell D. [2 ]
Rodriguez, Jill F. [1 ]
Tian, Feng [1 ]
Siegel, Donald J. [1 ,3 ,4 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Michigan Energy Inst, Ann Arbor, MI 48109 USA
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; SOLID-STATE; ELECTRODE; BATTERY; DISCHARGE; TRANSITION; CATALYSTS;
D O I
10.1021/ja208944x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thermodynamic stability and electronic structure of 40 surfaces of lithium peroxide (Li2O2) and lithium oxide (Li2O) were characterized using first-principles calculations. As these compounds constitute potential discharge products in Li-oxygen batteries, their surface properties are expected to play a key role in understanding electrochemical behavior in these systems. Stable surfaces were identified by comparing 23 distinct Li2O2 surfaces and 17 unique Li2O surfaces; crystallite areal fractions were determined through application of the Wulff construction. Accounting for the oxygen overbinding error in density functional theory results in the identification of several new Li2O2 oxygen-rich {0001} and {1 (1) over bar 00} terminations that are more stable than those previously reported. Although oxygen-rich facets predominate in Li2O2, in Li2O stoichiometric surfaces are preferred, consistent with prior studies. Surprisingly, surface-state analyses reveal that the stable surfaces of Li2O2 are half-metallic, despite the fact that Li2O2 is a bulk insulator. Surface oxygens in these facets are ferromagnetic with magnetic moments ranging from 0.2 to 0.5 mu(B), In contrast, the stable surfaces of Li2O are insulating and nonmagnetic. The distinct surface properties of these compounds may explain observations of electrochemical reversibility for systems in which Li2O2 is the discharge product and the irreversibility of systems that discharge to Li2O. Moreover, the presence of conductive surface pathways in Li2O2 could offset capacity limitations expected to arise from limited electron transport through the bulk.
引用
收藏
页码:1093 / 1103
页数:11
相关论文
共 66 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling [J].
Albertus, Paul ;
Girishkumar, G. ;
McCloskey, Bryan ;
Sanchez-Carrera, Roel S. ;
Kozinsky, Boris ;
Christensen, Jake ;
Luntz, A. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A343-A351
[3]   Surface conductivity of hydrogenated diamond films [J].
Andriotis, Antonis N. ;
Mpourmpakis, Giannis ;
Richter, Ernst ;
Menon, Madhu .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[4]  
[Anonymous], 2007, McGraw-Hill Encyclopedia of Science and Technology, Vtenth
[5]  
[Anonymous], 2006, EN STOR SYST GOALS
[6]  
[Anonymous], 2011, CRC Handbook of Chemistry and Physics, V92nd
[7]  
Bader R. F. W., 1994, ATOMS MOL QUANTUM TH
[8]   High-Capacity Lithium-Air Cathodes [J].
Beattie, S. D. ;
Manolescu, D. M. ;
Blair, S. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) :A44-A47
[9]   NEUTRON POWDER-DIFFRACTION STUDIES OF LITHIUM, SODIUM, AND POTASSIUM METAL [J].
BERLINER, R ;
FAJEN, O ;
SMITH, HG ;
HITTERMAN, RL .
PHYSICAL REVIEW B, 1989, 40 (18) :12086-12097
[10]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979