An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations

被引:110
作者
Alonso, A [1 ]
Valli, A [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Povo, Trento, Italy
关键词
domain decomposition methods; Maxwell equations;
D O I
10.1090/S0025-5718-99-01013-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time-harmonic Maxwell equations are considered in the low-frequency case. A finite element domain decomposition approach is proposed for the numerical approximation of the exact solution. This leads to an iteration-by-subdomain procedure, which is proven to converge. The rate of convergence turns out to be independent of the mesh size, showing that the preconditioner implicitly defined by the iterative procedure is optimal. For obtaining this convergence result it has been necessary to prove a regularity theorem for Dirichlet and Neumann harmonic fields.
引用
收藏
页码:607 / 631
页数:25
相关论文
共 17 条
[11]   ANALYSIS OF A FINITE-ELEMENT METHOD FOR MAXWELL EQUATIONS [J].
MONK, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :714-729
[12]   MIXED FINITE-ELEMENTS IN IR3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1980, 35 (03) :315-341
[13]   A NEW FAMILY OF MIXED FINITE-ELEMENTS IN R3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1986, 50 (01) :57-81
[14]   COUPLING OF VISCOUS AND INVISCID STOKES EQUATIONS VIA A DOMAIN DECOMPOSITION METHOD FOR FINITE-ELEMENTS [J].
QUARTERONI, A ;
LANDRIANI, GS ;
VALLI, A .
NUMERISCHE MATHEMATIK, 1991, 59 (08) :831-859
[15]   CORRECTION [J].
SARANEN, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 91 (01) :300-300
[17]  
VALLI A, 1996, ORTHOGONAL DECOMPOSI