Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula

被引:196
作者
Wais, RJ
Galera, C
Oldroyd, G
Catoira, R
Penmetsa, RV
Cook, D
Gough, C
Dénarié, J
Long, SR [1 ]
机构
[1] Stanford Univ, Howard Hughes Med Inst, Dept Biol Sci, Stanford, CA 94305 USA
[2] INRA, Lab Biol Mol Relat Plantes Microorganismes, CNRS, UMR215, F-31326 Castanet Tolosan, France
[3] Texas A&M Univ, Crop Biotechnol Ctr, Dept Plant Pathol & Microbiol, College Stn, TX 77843 USA
关键词
D O I
10.1073/pnas.230439797
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti results in the formation of nitrogen-fixing nodules on the roots of the host plant. The early stages of nodule formation are induced by bacteria via lipochitooligosaccharide signals known as Nod factors (NFs). These NFs are structurally specific for bacterium-host pairs and are sufficient to cause a range of early responses involved in the host developmental program. Early events in the signal transduction of NFs are not well defined. We have previously reported that Medicago sativa root hairs exposed to NF display sharp oscillations of cytoplasmic calcium ion concentration (calcium spiking). To assess the possible role of calcium spiking in the nodulation response, we analyzed M. truncatula mutants in five complementation groups. Each of the plant mutants is completely Nod(-) and is blocked at early stages of the symbiosis, We defined two genes, DMI1 and DMI2, required in common for early steps of infection and nodulation and for calcium spiking. Another mutant, altered in the DMI3 gene, has a similar mutant phenotype to dmi1 and dmi2 mutants but displays normal calcium spiking. The calcium behavior thus implies that the DMI3 gene acts either downstream of calcium spiking or downstream of a common branch point for the calcium response and the later nodulation responses. Two additional mutants, altered in the NSP and Ha genes, which show root hair branching in response to NF, are normal for calcium spiking. This system provides an opportunity to use genetics to study ligand-stimulated calcium spiking as a signal transduction event.
引用
收藏
页码:13407 / 13412
页数:6
相关论文
共 33 条
[1]   Endomycorrhizae and rhizobial Nod factors both require SYM8 to induce the expression of the early nodulin genes PsENOD5 and PsENOD12A [J].
Albrecht, C ;
Geurts, R ;
Lapeyrie, F ;
Bisseling, T .
PLANT JOURNAL, 1998, 15 (05) :605-614
[2]   Calcium - a life and death signal [J].
Berridge, MJ ;
Bootman, MD ;
Lipp, P .
NATURE, 1998, 395 (6703) :645-648
[3]   Ion changes in legume root hairs responding to nod factors [J].
Cárdenas, L ;
Holdaway-Clarke, TL ;
Sánchez, F ;
Quinto, C ;
Feijó, JA ;
Kunkel, JG ;
Hepler, PK .
PLANT PHYSIOLOGY, 2000, 123 (02) :443-451
[4]   Four genes of Medicago truncatula controlling components of a nod factor transduction pathway [J].
Catoira, R ;
Galera, C ;
de Billy, F ;
Penmetsa, RV ;
Journet, EP ;
Maillet, F ;
Rosenberg, C ;
Cook, D ;
Gough, C ;
Dénarié, J .
PLANT CELL, 2000, 12 (09) :1647-1665
[5]   The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C-elegans [J].
Dal Santo, P ;
Logan, MA ;
Chisholm, AD ;
Jorgensen, EM .
CELL, 1999, 98 (06) :757-767
[6]   Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations [J].
De Koninck, P ;
Schulman, H .
SCIENCE, 1998, 279 (5348) :227-230
[7]   Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis [J].
Denarie, J ;
Debelle, F ;
Prome, JC .
ANNUAL REVIEW OF BIOCHEMISTRY, 1996, 65 :503-535
[8]   Calcium oscillations increase the efficiency and specificity of gene expression [J].
Dolmetsch, RE ;
Xu, KL ;
Lewis, RS .
NATURE, 1998, 392 (6679) :933-936
[9]   Differential activation of transcription factors induced by Ca2+ response amplitude and duration [J].
Dolmetsch, RE ;
Lewis, RS ;
Goodnow, CC ;
Healy, JI .
NATURE, 1997, 386 (6627) :855-858
[10]  
Downie J. A., 1998, The Rhizobiaceae: molecular biology of model plant-associated bacteria., P387