High-resolution assessment of protein DNA binding affinity and selectivity utilizing a fluorescent intercalator displacement (FID) assay

被引:21
作者
Ham, YW
Tse, WC
Boger, DL
机构
[1] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1016/j.bmcl.2003.06.002
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Protein titration displacement of ethidium bromide bound to hairpin deoxyoligonucleotides containing any sequence of interest provides a well-defined titration curve (measuring the loss of fluorescence derived from the DNA bound ethidium bromide) that provides both absolute binding constants (K-a) and stoichiometry of binding. This use of a fluorescent intercalator displacement (FID) assay for establishing protein DNA binding affinity and selectivity is demonstrated with the examination of the LEF-1 HMG domain binding to hairpin deoxyoligonucleotides containing its commonly accepted consensus sequence 5'-CTTTGWW (W = A or T) and those modified (5'-CTNTGWW) to examine sequences implicated in early studies (5'-CTNTG). The effectiveness of the FID assay coupled with its technically non-demanding experimental use makes it an attractive alternative or complement to selection screening, footprinting or affinity cleavage, and electrophoretic mobility shift assays for detecting, characterizing, and quantitating protein DNA binding affinity and selectivity. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3805 / 3807
页数:3
相关论文
共 27 条
[1]   Nuclear endpoint of Wnt signaling: Neoplastic transformation induced by transactivating lymphoid-enhancing factor 1 [J].
Aoki, M ;
Hecht, A ;
Kruse, U ;
Kemler, R ;
Vogt, PK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (01) :139-144
[2]   DIFFERENCES AND SIMILARITIES IN DNA-BINDING PREFERENCES OF MYOD AND E2A PROTEIN COMPLEXES REVEALED BY BINDING-SITE SELECTION [J].
BLACKWELL, TK ;
WEINTRAUB, H .
SCIENCE, 1990, 250 (4984) :1104-1110
[3]   SEQUENCE-SPECIFIC DNA-BINDING BY THE C-MYC PROTEIN [J].
BLACKWELL, TK ;
KRETZNER, L ;
BLACKWOOD, EM ;
EISENMAN, RN ;
WEINTRAUB, H .
SCIENCE, 1990, 250 (4984) :1149-1151
[4]   Total synthesis of distamycin A and 2640 analogues: A solution-phase combinatorial approach to the discovery of new, bioactive DNA binding agents and development of a rapid, high-throughput screen for determining relative DNA binding affinity or DNA binding sequence selectivity [J].
Boger, DL ;
Fink, BE ;
Hedrick, MP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (27) :6382-6394
[5]   A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity [J].
Boger, DL ;
Fink, BE ;
Brunette, SR ;
Tse, WC ;
Hedrick, MP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (25) :5878-5891
[6]   Thiazole orange as the fluorescent intercalator in a high resolution FID assay for determining DNA binding affinity and sequence selectivity of small molecules [J].
Boger, DL ;
Tse, WC .
BIOORGANIC & MEDICINAL CHEMISTRY, 2001, 9 (09) :2511-2518
[7]   A SINGLE POLYPEPTIDE POSSESSES THE BINDING AND TRANSCRIPTION ACTIVITIES OF THE ADENOVIRUS MAJOR LATE TRANSCRIPTION FACTOR [J].
CHODOSH, LA ;
CARTHEW, RW ;
SHARP, PA .
MOLECULAR AND CELLULAR BIOLOGY, 1986, 6 (12) :4723-4733
[8]   DESIGN OF SEQUENCE-SPECIFIC DNA-BINDING MOLECULES [J].
DERVAN, PB .
SCIENCE, 1986, 232 (4749) :464-471
[9]   Regulation of LEF-1/TCF transcription factors by Wnt and other signals [J].
Eastman, Q ;
Grosschedl, R .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (02) :233-240
[10]   DNAASE FOOTPRINTING - SIMPLE METHOD FOR DETECTION OF PROTEIN-DNA BINDING SPECIFICITY [J].
GALAS, DJ ;
SCHMITZ, A .
NUCLEIC ACIDS RESEARCH, 1978, 5 (09) :3157-3170