The anoxic plant mitochondrion as a nitrite: NO reductase

被引:134
作者
Gupta, Kapuganti J. [2 ]
Igamberdiev, Abir U. [1 ]
机构
[1] Mem Univ Newfoundland, Dept Biol, St John, NF A1B 3X9, Canada
[2] Univ Rostock, Dept Plant Physiol, D-10859 Rostock, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Plant mitochondria; Anoxia; Nitrite reduction; Nitric oxide; Hemoglobin; CYTOCHROME-C-OXIDASE; ELECTRON-TRANSPORT; CYTOPLASMIC ACIDOSIS; ARABIDOPSIS-THALIANA; DIOXYGENASE FUNCTION; S-NITROSYLATION; IN-VITRO; OXYGEN; HEMOGLOBIN; NITRATE;
D O I
10.1016/j.mito.2011.03.005
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Under the conditions of oxygen deprivation, accumulating nitrite can be reduced in the mitochondrial electron transport chain forming free radical nitric oxide (NO). By reducing nitrite to NO, plant mitochondria preserve the capacity to oxidize external NADH and NADPH and retain a limited power for ATP synthesis complementing glycolytic ATP production. NO participates in O-2 balance in mitochondria by competitively inhibiting cytochrome c oxidase which can oxidize it to nitrite when oxygen concentration increases. Some of the NO escapes to the cytosol, where the efficient scavenging system involving non-symbiotic hemoglobin oxygenates NO to nitrate and supports continuous anaerobic turnover of nitrogen species. (C) 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
引用
收藏
页码:537 / 543
页数:7
相关论文
共 70 条
[41]   Protection from nitrosative stress by yeast flavohemoglobin [J].
Liu, LM ;
Zeng, M ;
Hausladen, A ;
Heitman, J ;
Stamler, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4672-4676
[42]   Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase [J].
Mason, MG ;
Nicholls, P ;
Wilson, MT ;
Cooper, CE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (03) :708-713
[43]   Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits [J].
Millar, AH ;
Eubel, H ;
Jänsch, L ;
Kruft, V ;
Heazlewood, JL ;
Braun, HP .
PLANT MOLECULAR BIOLOGY, 2004, 56 (01) :77-90
[44]   Changes in the mitochondrial proteome during the anoxia to air transition in rice focus around cytochrome-containing respiratory complexes [J].
Millar, AH ;
Trend, AE ;
Heazlewood, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (38) :39471-39478
[45]   Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae [J].
Modolo, LV ;
Augusto, O ;
Almeida, IMG ;
Magalhaes, JR ;
Salgado, I .
FEBS LETTERS, 2005, 579 (17) :3814-3820
[46]   Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species [J].
Moller, IM .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 2001, 52 :561-591
[47]   AtNOS/AtNOA1 Is a Functional Arabidopsis thaliana cGTPase and Not a Nitric-oxide Synthase [J].
Moreau, Magali ;
Lee, Gyu In ;
Wang, Yongzeng ;
Crane, Brian R. ;
Klessig, Daniel F. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (47) :32957-32967
[48]   INFLUENCE OF NO3- AND NH4+ NUTRITION ON FERMENTATION, NITRATE REDUCTASE-ACTIVITY AND ADENYLATE ENERGY-CHARGE OF ROOTS OF CAREX-PSEUDOCYPERUS L AND CAREX-SYLVATICA HUDS EXPOSED TO ANAEROBIC NUTRIENT SOLUTIONS [J].
MULLER, E ;
ALBERS, BP ;
JANIESCH, P .
PLANT AND SOIL, 1994, 166 (02) :221-230
[49]   NO way to live; the various roles of nitric oxide in plant-pathogen interactions [J].
Mur, LAJ ;
Carver, TLW ;
Prats, E .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (03) :489-505
[50]   Regulation of Plant Glycine Decarboxylase by S-Nitrosylation and Glutathionylation [J].
Palmieri, M. Cristina ;
Lindermayr, Christian ;
Bauwe, Hermann ;
Steinhauser, Clara ;
Durner, Joerg .
PLANT PHYSIOLOGY, 2010, 152 (03) :1514-1528