Convective Transport in a Nanofluid Saturated Porous Layer With Thermal Non Equilibrium Model

被引:89
作者
Bhadauria, B. S. [1 ]
Agarwal, Shilpi [1 ]
机构
[1] Banaras Hindu Univ, DST Ctr Interdisciplinary Math Sci, Fac Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
关键词
Local thermal non-equilibrium; Nanofluid; Porous medium; Instability; Natural convection; Horton-Roger-Lapwood problem; DOUBLE-DIFFUSIVE CONVECTION; NONEQUILIBRIUM MODEL; NATURAL-CONVECTION; BINARY NANOFLUIDS; INSTABILITY; ONSET; NANOPARTICLES;
D O I
10.1007/s11242-011-9727-8
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The effect of local thermal non-equilibrium on linear and non-linear thermal instability in a horizontal porous medium saturated by a nanofluid has been investigated analytically. The Brinkman Model has been used for porous medium, while nanofluid incorporates the effect of Brownian motion along with thermophoresis. A three-temperature model has been used for the effect of local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. The linear stability is based on normal mode technique, while for nonlinear analysis, a minimal representation of the truncated Fourier series analysis involving only two terms has been used. The critical conditions for the onset of convection and the heat and mass transfer across the porous layer have been obtained numerically.
引用
收藏
页码:107 / 131
页数:25
相关论文
共 44 条
[21]   Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model [J].
Kuznetsov, A. V. ;
Nield, D. A. .
TRANSPORT IN POROUS MEDIA, 2010, 81 (03) :409-422
[22]  
Kuznetsov AV, 1998, TRANSPORT PHENOMENA IN POROUS MEDIA, P103, DOI 10.1016/B978-008042843-7/50005-2
[23]   CONVECTION OF A FLUID IN A POROUS MEDIUM [J].
LAPWOOD, ER .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1948, 44 (04) :508-521
[24]   Double diffusive convection in a porous layer using a thermal non-equilibrium model [J].
Malashetty, M. S. ;
Swamy, Mahantesh ;
Heera, Rajashekhar .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2008, 47 (09) :1131-1147
[25]   ANISOTROPIC THERMOCONVECTIVE EFFECTS ON THE ONSET OF DOUBLE-DIFFUSIVE CONVECTION IN A POROUS-MEDIUM [J].
MALASHETTY, MS .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1993, 36 (09) :2397-2401
[26]   The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model [J].
Malashetty, MS ;
Shivakumara, IS ;
Kulkarni, S .
TRANSPORT IN POROUS MEDIA, 2005, 60 (02) :199-215
[27]   The onset of Lapwood-Brinkman convection using a thermal non-equilibrium model [J].
Malashetty, MS ;
Shivakumara, IS ;
Kulkarni, S .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (06) :1155-1163
[28]  
Masuda H., 1993, NETSU BUSSEI, V4, P227, DOI [DOI 10.2963/JJTP.7.227, 10.2963/jjtp.7.227]
[29]   DOUBLE-DIFFUSIVE CONVECTION IN A POROUS-MEDIUM [J].
MURRAY, BT ;
CHEN, CF .
JOURNAL OF FLUID MECHANICS, 1989, 201 :147-166
[30]  
Nield D, 1968, WATER RESOUR RES, V4, P553, DOI DOI 10.1029/WR004I003P00553