Planck 2015 results XIII. Cosmological parameters

被引:5724
作者
Ade, P. A. R. [109 ]
Aghanim, N. [73 ]
Arnaud, M. [89 ]
Ashdown, M. [8 ,85 ]
Aumont, J. [73 ]
Baccigalupi, C. [107 ]
Banday, A. J. [13 ,121 ]
Barreiro, R. B. [80 ]
Bartlett, J. G. [1 ,82 ]
Bartolo, N. [39 ,81 ]
Battaner, E. [124 ,125 ]
Battye, R. [83 ]
Benabed, K. [74 ,120 ]
Benoit, A. [71 ]
Benoit-Levy, A. [30 ,74 ,120 ]
Bernard, J. -P. [13 ,121 ]
Bersanelli, M. [42 ,60 ]
Bielewicz, P. [13 ,101 ,107 ]
Bock, J. J. [15 ,82 ]
Bonaldi, A. [83 ]
Bonavera, L. [80 ]
Bond, J. R. [12 ]
Borrill, J. [18 ,113 ]
Bouchet, F. R. [74 ,111 ]
Boulanger, F. [73 ]
Bucher, M. [1 ]
Burigana, C. [40 ,59 ,61 ]
Butler, R. C. [59 ]
Calabrese, E. [116 ]
Cardoso, J. -F. [1 ,74 ,90 ,91 ]
Catalano, A. [88 ,92 ]
Challinor, A. [16 ,77 ,85 ]
Chamballu, A. [20 ,73 ,89 ]
Chary, R. -R. [70 ]
Chiang, H. C. [9 ,34 ]
Chluba, J. [29 ,85 ]
Christensen, P. R. [45 ,102 ]
Church, S. [115 ]
Clements, D. L. [69 ]
Colombi, S. [74 ,120 ]
Colombo, L. P. L. [28 ,82 ]
Combet, C. [92 ]
Coulais, A. [88 ]
Crill, B. P. [15 ,88 ]
Curto, A. [8 ,80 ,85 ]
Cuttaia, F. [59 ]
Danese, L. [107 ]
Davies, R. D. [83 ]
Davis, R. J. [83 ]
de Bernardis, P. [41 ]
机构
[1] Univ Paris Diderot, APC, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France
[2] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland
[3] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland
[4] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa
[5] Agenzia Spaziale Italiana Sci, Ctr Data, Via Politecn Snc, I-00133 Rome, Italy
[6] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France
[7] Aix Marseille Univ, Ctr Phys Theor, 163 Ave Luminy, F-13288 Marseille, France
[8] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[9] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa
[10] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Casilla 763 0355, Santiago, Chile
[11] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar, BR-70308200 Brasilia, DF, Brazil
[12] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada
[13] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France
[14] Trinity Coll Dublin, CRANN, Dublin, Ireland
[15] CALTECH, Pasadena, CA 91125 USA
[16] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England
[17] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain
[18] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA
[19] CSIC, Plaza Murillo 2, E-28049 Madrid, Spain
[20] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France
[21] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark
[22] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland
[23] Univ La Laguna, Dept Astrofis, Tenerife 38206, Spain
[24] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain
[25] Univ Toronto, Dept Astron & Astrophys, 50 St George St,38100, Toronto, ON, Canada
[26] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
[27] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada
[28] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA
[29] Johns Hopkins Univ, Bloomberg Ctr 435, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA
[30] UCL, Dept Phys & Astron, London WC1E 6BT, England
[31] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England
[32] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA
[33] Univ Helsinki, Dept Phys, Gustaf Hallstromin katu 2a, Helsinki 00560, Finland
[34] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA
[35] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[36] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA USA
[37] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[38] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA
[39] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy
[40] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy
[41] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[42] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[43] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy
[44] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00185 Rome, Italy
[45] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark
[46] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark
[47] European Southern Observ, ESO Vitacura, Alonso Cordova 3107,Casilla 19001, Santiago, Chile
[48] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain
[49] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands
[50] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
基金
英国科学技术设施理事会; 欧洲研究理事会;
关键词
cosmology: observations; cosmology: theory; cosmic background radiation; cosmological parameters; PROBE WMAP OBSERVATIONS; BARYON ACOUSTIC-OSCILLATIONS; MICROWAVE BACKGROUND ANISOTROPIES; REDSHIFT-SPACE DISTORTIONS; CMB SPECTRAL DISTORTIONS; ANNIHILATING DARK-MATTER; MAIN GALAXY SAMPLE; POWER SPECTRUM; 2-PHOTON DECAY; GROWTH-RATE;
D O I
10.1051/0004-6361/201525830
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter Lambda CDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted "base Lambda CDM" in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H-0 = (67.8 +/- 0.9) km s(-1)Mpc(-1), a matter density parameter Omega(m) = 0.308 +/- 0.012, and a tilted scalar spectral index with ns = 0.968 +/- 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of tau = 0.066 +/- 0.016, corresponding to a reionization redshift of z(re) = 8.8(-1.4)(+1.7) These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base Lambda CDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find N-eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom, consistent with the value N-eff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to Sigma m(v) < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with vertical bar Omega(K)vertical bar < 0.005. Adding a tensor component as a single-parameter extension to base Lambda CDM we find an upper limit on the tensor-to-scalar ratio of r(0.002) < 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r(0.002) < 0.09 and disfavours inflationary models with a V(phi) proportional to phi(2) potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = -1.006 +/- 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base Lambda CDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base Lambda CDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base Lambda CDM cosmology. Apart from these tensions, the base Lambda CDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.
引用
收藏
页数:63
相关论文
共 368 条
[91]   Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations [J].
Battye, Richard A. ;
Moss, Adam .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)
[92]   Neutrinoless universe [J].
Beacom, JF ;
Bell, NF ;
Dodelson, S .
PHYSICAL REVIEW LETTERS, 2004, 93 (12) :121302-1
[93]   Constraining isocurvature initial conditions with WMAP 3-year data [J].
Bean, Rachel ;
Dunkley, Joanna ;
Pierpaoli, Elena .
PHYSICAL REVIEW D, 2006, 74 (06)
[94]   Neutrino mixing and cosmology [J].
Bell, NF .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 138 :76-78
[95]   THE 1% CONCORDANCE HUBBLE CONSTANT [J].
Bennett, C. L. ;
Larson, D. ;
Weiland, J. L. ;
Hinshaw, G. .
ASTROPHYSICAL JOURNAL, 2014, 794 (02)
[96]   NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS [J].
Bennett, C. L. ;
Larson, D. ;
Weiland, J. L. ;
Jarosik, N. ;
Hinshaw, G. ;
Odegard, N. ;
Smith, K. M. ;
Hill, R. S. ;
Gold, B. ;
Halpern, M. ;
Komatsu, E. ;
Nolta, M. R. ;
Page, L. ;
Spergel, D. N. ;
Wollack, E. ;
Dunkley, J. ;
Kogut, A. ;
Limon, M. ;
Meyer, S. S. ;
Tucker, G. S. ;
Wright, E. L. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2013, 208 (02)
[97]   SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES? [J].
Bennett, C. L. ;
Hill, R. S. ;
Hinshaw, G. ;
Larson, D. ;
Smith, K. M. ;
Dunkley, J. ;
Gold, B. ;
Halpern, M. ;
Jarosik, N. ;
Kogut, A. ;
Komatsu, E. ;
Limon, M. ;
Meyer, S. S. ;
Nolta, M. R. ;
Odegard, N. ;
Page, L. ;
Spergel, D. N. ;
Tucker, G. S. ;
Weiland, J. L. ;
Wollack, E. ;
Wright, E. L. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2011, 192 (02)
[98]   First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations:: Preliminary maps and basic results [J].
Bennett, CL ;
Halpern, M ;
Hinshaw, G ;
Jarosik, N ;
Kogut, A ;
Limon, M ;
Meyer, SS ;
Page, L ;
Spergel, DN ;
Tucker, GS ;
Wollack, E ;
Wright, EL ;
Barnes, C ;
Greason, MR ;
Hill, RS ;
Komatsu, E ;
Nolta, MR ;
Odegard, N ;
Peiris, HV ;
Verde, L ;
Weiland, JL .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 148 (01) :1-27
[99]   COSMOLOGICAL CONSTRAINTS FROM SUNYAEV-ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg2 OF THE SOUTH POLE TELESCOPE SURVEY [J].
Benson, B. A. ;
de Haan, T. ;
Dudley, J. P. ;
Reichardt, C. L. ;
Aird, K. A. ;
Andersson, K. ;
Armstrong, R. ;
Ashby, M. L. N. ;
Bautz, M. ;
Bayliss, M. ;
Bazin, G. ;
Bleem, L. E. ;
Brodwin, M. ;
Carlstrom, J. E. ;
Chang, C. L. ;
Cho, H. M. ;
Clocchiatti, A. ;
Crawford, T. M. ;
Crites, A. T. ;
Desai, S. ;
Dobbs, M. A. ;
Foley, R. J. ;
Forman, W. R. ;
George, E. M. ;
Gladders, M. D. ;
Gonzalez, A. H. ;
Halverson, N. W. ;
Harrington, N. ;
High, F. W. ;
Holder, G. P. ;
Holzapfel, W. L. ;
Hoover, S. ;
Hrubes, J. D. ;
Jones, C. ;
Joy, M. ;
Keisler, R. ;
Knox, L. ;
Lee, A. T. ;
Leitch, E. M. ;
Liu, J. ;
Lueker, M. ;
Luong-Van, D. ;
Mantz, A. ;
Marrone, D. P. ;
McDonald, M. ;
McMahon, J. J. ;
Mehl, J. ;
Meyer, S. S. ;
Mocanu, L. ;
Mohr, J. J. .
ASTROPHYSICAL JOURNAL, 2013, 763 (02)
[100]   Statistical tests of sterile neutrinos using cosmology and short-baseline data [J].
Bergstroem, Johannes ;
Gonzalez-Garcia, M. C. ;
Niro, V. ;
Salvado, J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10) :1-24