Conserved organization of genes in trypanosomatids

被引:50
作者
Bringaud, F
Vedrenne, C
Cuvillier, A
Parzy, D
Baltz, D
Tetaud, E
Pays, E
Venegas, J
Merlin, G
Baltz, T
机构
[1] Univ Bordeaux 2, Mol Parasitol Lab, CNRS, UPRESA 5016, F-33076 Bordeaux, France
[2] IMTSSA, Parasitol Lab, F-13007 Marseille, France
[3] Free Univ Brussels, Dept Biol Mol, B-1640 Rhode St Genese, Belgium
关键词
glucose transporter; flanking gene; gene organization; Trypanosoma; Leishmania;
D O I
10.1016/S0166-6851(98)00080-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trypanosomatids are unicellular protozoan parasites which constitute some of the most primitive eukaryotes. Leishmania spp, Trypanosoma cruzi and members of the Trypanosoma brucei group, which cause human diseases, are the most studied representatives of this large family. Here we report a comparative analysis of a large genomic region containing glucose transporter genes in three Salivarian trypanosomes (T. brucei, T. congolense and T. vivax), T. cruzi and Leishmania donovani. In T. brucei, the 8 kb (upstream) and 14 kb (downstream) regions flanking the glucose transporter genes cluster contain two and six new genes, respectively, six of them encoding proteins homologous to known eukaryotic proteins (phosphatidylinositol 3 kinase, ribosomal protein S12, DNAJ and three small G-proteins-Rab1, YPT6 and ARL3). This gene organization is identical in T. brucei, T. congolense and T. vivax suggesting that Salivarian trypanosomes have a high level of conservation in gene organization. In T. cruzi and Leishmania, the overall organization of this cluster is conserved, with insertion of additional genes when compared with T. brucei. Phylogenetic reconstitution based on glucose transporters is in accord with the monophyly of the genus Trypanosoma and the early separation of T. vivax within Salivarian trypanosomes. On the basis of gene organization, biochemical characteristics of isoforms and phylogeny, we discuss the genesis of the glucose transporter multigene family in Salivarian trypanosomes. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 73 条
[1]  
ALPHONZO JD, 1997, NUCLEIC ACIDS RES, V25, P3751
[2]   The analysis of protein coding genes suggests monophyly of Trypanosoma [J].
Alvarez, F ;
Cortinas, MN ;
Musto, H .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 1996, 5 (02) :333-343
[3]  
BAKER JR, 1974, S SOC GEN MICROBIOL, V24, P343
[4]   CULTIVATION IN A SEMI-DEFINED MEDIUM OF ANIMAL INFECTIVE FORMS OF TRYPANOSOMA-BRUCEI, TRYPANOSOMA-EQUIPERDUM, TRYPANOSOMA-EVANSI, TRYPANOSOMA-RHODESIENSE AND T-GAMBIENSE [J].
BALTZ, T ;
BALTZ, D ;
GIROUD, C ;
CROCKETT, J .
EMBO JOURNAL, 1985, 4 (05) :1273-1277
[5]   Hypervariability in gene copy number for the glucose transporter genes in trypanosomes [J].
Barrett, MP ;
Bringaud, F ;
Doua, F ;
Melville, SE ;
Baltz, T .
JOURNAL OF EUKARYOTIC MICROBIOLOGY, 1996, 43 (03) :244-249
[6]   Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2 [J].
Barrett, MP ;
Tetaud, E ;
Seyfang, A ;
Bringaud, F ;
Baltz, T .
BIOCHEMICAL JOURNAL, 1995, 312 :687-691
[7]   DOUBLE COS SITE VECTORS - SIMPLIFIED COSMID CLONING [J].
BATES, PF ;
SWIFT, RA .
GENE, 1983, 26 (2-3) :137-146
[8]   ACTIVATION OF TRYPANOSOME SURFACE GLYCOPROTEIN GENES INVOLVES A DUPLICATION-TRANSPOSITION LEADING TO AN ALTERED 3' END [J].
BERNARDS, A ;
VANDERPLOEG, LHT ;
FRASCH, ACC ;
BORST, P ;
BOOTHROYD, JC ;
COLEMAN, S ;
CROSS, GAM .
CELL, 1981, 27 (03) :497-505
[9]   The role of transferrin-receptor variation in the host range of Trypanosoma brucei [J].
Bitter, W ;
Gerrits, H ;
Kieft, R ;
Borst, P .
NATURE, 1998, 391 (6666) :499-502
[10]   ON THE DNA CONTENT AND PLOIDY OF TRYPANOSOMES [J].
BORST, P ;
VANDERPLOEG, M ;
VANHOEK, JFM ;
TAS, J ;
JAMES, J .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1982, 6 (01) :13-23