Inactivation of Kv3.3 potassium channels in heterologous expression systems

被引:43
作者
Fernandez, FR
Morales, E
Rashid, AJ
Dunn, RJ
Turner, RW
机构
[1] Univ Calgary, Neurosci Res Grp, Calgary, AB T2N 4N1, Canada
[2] Montreal Gen Hosp, Neurosci Res Ctr, Montreal, PQ H3G 1A4, Canada
[3] McGill Univ, Dept Neurol, Montreal, PQ H3G 1A4, Canada
[4] McGill Univ, Dept Biol, Montreal, PQ H3G 1A4, Canada
关键词
D O I
10.1074/jbc.M304235200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Kv3.3 K+ channels are believed to incorporate an NH2-terminal domain to produce an intermediate rate of inactivation relative to the fast inactivating K+ channels Kv3.4 and Kv1.4. The rate of Kv3.3 inactivation has, however, been difficult to establish given problems in obtaining consistent rates of inactivation in expression systems. This study characterized the properties of AptKv3.3, the teleost homologue of Kv3.3, when expressed in Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells. We show that the properties of AptKv3.3 differ significantly between CHO and HEK cells, with the largest difference occurring in the rate and voltage dependence of inactivation. While AptKv3.3 in CHO cells showed a fast and voltage-dependent rate of inactivation consistent with N-type inactivation, currents in HEK cells showed rates of inactivation that were voltage-independent and more consistent with a slower C-type inactivation. Examination of the mRNA sequence revealed that the first methionine start site had a weak Kozak consensus sequence, suggesting that the lack of inactivation in HEK cells could be due to translation at a second methionine start site downstream of the NH2-terminal coding region. Mutating the nucleotide sequence surrounding the first methionine start site to one more closely resembling a Kozak consensus sequence produced currents that inactivated with a fast and voltage-dependent rate of inactivation in both CHO and HEK cells. These results indicate that under the appropriate conditions Kv3.3 channels can exhibit fast and reliable inactivation that approaches that more typically expected of "A"-type K+ currents.
引用
收藏
页码:40890 / 40898
页数:9
相关论文
共 40 条
[1]   A REINTERPRETATION OF MAMMALIAN SODIUM-CHANNEL GATING BASED ON SINGLE CHANNEL RECORDING [J].
ALDRICH, RW ;
COREY, DP ;
STEVENS, CF .
NATURE, 1983, 306 (5942) :436-441
[2]   Molecular diversity of K+ channels [J].
Coetzee, WA ;
Amarillo, Y ;
Chiu, J ;
Chow, A ;
Lau, D ;
McCormack, T ;
Moreno, H ;
Nadal, MS ;
Ozaita, A ;
Pountney, D ;
Saganich, M ;
Vega-Saenz de Miera, E ;
Rudy, B .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :233-285
[3]   VOLTAGE CLAMP STUDIES OF A TRANSIENT OUTWARD MEMBRANE CURRENT IN GASTROPOD NEURAL SOMATA [J].
CONNOR, JA ;
STEVENS, CF .
JOURNAL OF PHYSIOLOGY-LONDON, 1971, 213 (01) :21-&
[4]   ELIMINATION OF RAPID POTASSIUM CHANNEL INACTIVATION BY PHOSPHORYLATION OF THE INACTIVATION GATE [J].
COVARRUBIAS, M ;
WEI, AA ;
SALKOFF, L ;
VYAS, TB .
NEURON, 1994, 13 (06) :1403-1412
[5]   STABLE EXPRESSION AND REGULATION OF A RAT-BRAIN K+ CHANNEL [J].
CRITZ, SD ;
WIBLE, BA ;
LOPEZ, HS ;
BROWN, AM .
JOURNAL OF NEUROCHEMISTRY, 1993, 60 (03) :1175-1178
[6]  
DEMIERA EV, 1994, HDB MEMBRANE CHANNEL, P41
[7]  
DEMIERA EV, 1992, P ROY SOC LOND B BIO, V248, P9, DOI [DOI 10.1098/RSPB.1992.0036, 10.1098/rspb.1992.0036]
[8]   A LIVER-ENRICHED TRANSCRIPTIONAL ACTIVATOR PROTEIN, LAP, AND A TRANSCRIPTIONAL INHIBITORY PROTEIN, LIP, ARE TRANSLATED FROM THE SAME MESSENGER-RNA [J].
DESCOMBES, P ;
SCHIBLER, U .
CELL, 1991, 67 (03) :569-579
[9]   Model of gamma frequency burst discharge generated by conditional backpropagation [J].
Doiron, B ;
Longtin, A ;
Turner, RW ;
Maler, L .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 86 (04) :1523-1545
[10]   REGULATION OF SHAKER K+ CHANNEL INACTIVATION GATING BY THE CAMP-DEPENDENT PROTEIN-KINASE [J].
DRAIN, P ;
DUBIN, AE ;
ALDRICH, RW .
NEURON, 1994, 12 (05) :1097-1109