Charged particle interferometry in Plebanski-Demianski black hole spacetimes

被引:17
作者
Kagramanova, Valeria [1 ]
Kunz, Jutta [1 ]
Laemmerzahl, Claus [2 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
[2] Univ Bremen, ZARM, D-28359 Bremen, Germany
关键词
D O I
10.1088/0264-9381/25/10/105023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Plebanski-Demianski solution is a very general axially symmetric analytical solution of the Einstein field equations generalizing the Kerr solution. This solution depends on seven parameters which under certain circumstances are related to mass, rotation, cosmological constant, NUT parameter, electric and magnetic charges and acceleration. In this paper we present a general description of matter wave interferometry in the general Plebanski-Demianski black hole spacetime. Particular emphasis is placed on a gauge invariant description of the symmetries of the gauge field. We show that it is possible to have access to all parameters separately except the acceleration. For neutral particles there is only access to a combination of electric and magnetic charge.
引用
收藏
页数:17
相关论文
共 36 条
[11]  
DEGNAN J, 2007, ASTROPHYSICS SPACE S, V349
[12]   SEPARABILITY STRUCTURES AND KILLING-YANO TENSORS IN VACUUM TYPE-D SPACE-TIMES WITHOUT ACCELERATION [J].
DEMIANSKI, M ;
FRANCAVIGLIA, M .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1980, 19 (09) :675-680
[13]   Maxwell duality, Lorentz invariance, and topological phase [J].
Dowling, JP ;
Williams, CP ;
Franson, JD .
PHYSICAL REVIEW LETTERS, 1999, 83 (13) :2486-2489
[14]   Remarks on exact solutions [J].
Ehlers, J. .
GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (06) :1059-1062
[15]  
EHLERS J, 1962, THEORIES RELATIVISTE
[16]  
Ehlers J., 1961, AKAD WISS LIT MAINZ, P793
[17]   Separability of Hamilton-Jacobi and Klein-Gordon equations in general Kerr-NUT-AdS spacetimes [J].
Frolov, Valeri P. ;
Krtous, Pavel ;
Kubiznak, David .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02)
[18]  
FURTADO C, 2005, PHYS SCR, V71, P11
[19]   METHOD FOR GENERATING SOLUTIONS OF EINSTEINS EQUATIONS [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (06) :918-&
[20]   A new look at the Plebanski-Demianski family of solutions [J].
Griffiths, J. B. ;
Podolsky, J. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (03) :335-369