Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54

被引:156
作者
Thomä, NH
Czyzewski, BK
Alexeev, AA
Mazin, AV
Kowalczykowski, SC
Pavletich, NP
机构
[1] Mem Sloan Kettering Canc Ctr, Struct Biol Program, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Howard Hughes Med Inst, New York, NY 10021 USA
[3] Univ Calif Davis, Div Biol Sci, Microbiol Sect, Davis, CA 95616 USA
[4] Univ Calif Davis, Div Biol Sci, Sect Mol & Cellular Biol, Davis, CA 95616 USA
[5] Drexel Univ, Coll Med, Dept Biochem, Philadelphia, PA 19102 USA
关键词
D O I
10.1038/nsmb919
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SWI2/SNF2 chromatin-remodeling proteins mediate the mobilization of nucleosomes and other DNA-associated proteins. SWI2/SNF2 proteins contain sequence motifs characteristic of SF2 helicases but do not have helicase activity. Instead, they couple ATP hydrolysis with the generation of superhelical torsion in DNA. The structure of the nucleosome-remodeling domain of zebrafish Rad54, a protein involved in Rad51-mediated homologous recombination, reveals that the core of the SWI2/SNF2 enzymes consist of two alpha/beta-lobes similar to SF2 helicases. The Rad54 helicase lobes contain insertions that form two helical domains, one within each lobe. These insertions contain SWI2/SNF2-specific sequence motifs likely to be central to SWI2/SNF2 function. A broad cleft formed by the two lobes and flanked by the helical insertions contains residues conserved in SWI2/SNF2 proteins and motifs implicated in DNA-binding by SF2 helicases. The Rad54 structure suggests that SWI2/SNF2 proteins use a mechanism analogous to helicases to translocate on dsDNA.
引用
收藏
页码:350 / 356
页数:7
相关论文
共 51 条
  • [1] Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament
    Alexeev, A
    Mazin, A
    Kowalczykowski, SC
    [J]. NATURE STRUCTURAL BIOLOGY, 2003, 10 (03) : 182 - 186
  • [2] A conserved N-terminal motif in Rad54 is important for chromatin remodeling and homologous strand pairing
    Alexiadis, V
    Lusser, A
    Kadonaga, JT
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (26) : 27824 - 27829
  • [3] Strand pairing by Rad54 and Rad51 is enhanced by chromatin
    Alexiadis, V
    Kadonaga, JT
    [J]. GENES & DEVELOPMENT, 2002, 16 (21) : 2767 - 2771
  • [4] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [5] Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
  • [6] ATP-dependent nucleosomere modeling
    Becker, PB
    Hörz, W
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 : 247 - 273
  • [7] High-resolution structure of the E.coli RecQ helicase catalytic core
    Bernstein, DA
    Zittel, MC
    Keck, JL
    [J]. EMBO JOURNAL, 2003, 22 (19) : 4910 - 4921
  • [8] Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia
    Boerkoel, CF
    Takashima, H
    John, J
    Yan, J
    Stankiewicz, P
    Rosenbarker, L
    André, JL
    Bogdanovic, R
    Burguet, A
    Cockfield, S
    Cordeiro, I
    Fründ, S
    Illies, F
    Joseph, M
    Kaitila, I
    Lama, G
    Loirat, C
    McLeod, DR
    Milford, DV
    Petty, EM
    Rodrigo, F
    Saraiva, JM
    Schmidt, B
    Smith, GC
    Spranger, J
    Stein, A
    Thiele, H
    Tizard, J
    Weksberg, R
    Lupski, JR
    Stockton, DW
    [J]. NATURE GENETICS, 2002, 30 (02) : 215 - 220
  • [9] AN EXPANDING FAMILY OF HELICASES WITHIN THE DEAD/H SUPERFAMILY
    BORK, P
    KOONIN, EV
    [J]. NUCLEIC ACIDS RESEARCH, 1993, 21 (03) : 751 - 752
  • [10] Generation, representation and flow of phase information in structure determination:: recent developments in and around SHARP 2.0
    Bricogne, G
    Vonrhein, C
    Flensburg, C
    Schiltz, M
    Paciorek, W
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2003, 59 : 2023 - 2030