Homologous recombinational repair of DNA ensures mammalian chromosome stability

被引:352
作者
Thompson, LH
Schild, D
机构
[1] Lawrence Livermore Natl Lab, Biol & Biotechnol Res Program, Livermore, CA 94551 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA
关键词
homologous recombinational repair; DNA; chromosome;
D O I
10.1016/S0027-5107(01)00115-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The process of homologous recombinational repair (HRR) is a major DNA repair pathway that acts on double-strand breaks and interstrand crosslinks, and probably to a lesser extent on other kinds of DNA damage. HRR provides a mechanism for the error-fret removal of damage present in DNA that has replicated (S and G2 phases). Thus, HRR acts in a critical way, in coordination with the S and G2 checkpoint machinery, to eliminate chromosomal breaks before the cell division occurs. Many of the human HRR genes, including five Rad51 paralogs, have been identified, and knockout mutants for most of these genes are available in chicken DT40 cells. In the mouse, most of the knockout mutations cause embryonic lethality. The Brca1 and Brca2 breast cancer susceptibility genes appear to be intimately involved in HRR, but the mechanistic basis is unknown. Biochemical studies with purified proteins and cell extracts, combined with cytological studies of nuclear foci, have begun to establish an outline of the steps in mammalian HRR. This pathway is subject to complex regulatory controls from the checkpoint machinery and other processes, and there is increasing evidence that loss of HRR gene function can contribute to tumor development. This review article is meant to be an update of our previous review [Biochimie 81 (1999) 87]. Published by Elsevier Science B.V.
引用
收藏
页码:131 / 153
页数:23
相关论文
共 247 条
[1]   BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair [J].
Abbott, DW ;
Thompson, ME ;
Robinson-Benion, C ;
Tomlinson, G ;
Jensen, RA ;
Holt, JT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18808-18812
[2]   Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells [J].
Abbott, DW ;
Freeman, ML ;
Holt, JT .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1998, 90 (13) :978-985
[3]  
Agami R, 1999, NATURE, V399, P809
[4]   The N-terminal domain of the human Rad51 protein binds DNA: Structure and a DNA binding surface as revealed by NMR [J].
Aihara, H ;
Ito, Y ;
Kurumizaka, H ;
Yokoyama, S ;
Shibata, T .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 290 (02) :495-504
[5]  
Antoccia A, 1999, INT J RADIAT BIOL, V75, P583
[6]   Loss of heterozygosity of 14q32 in colorectal carcinoma [J].
Bando, T ;
Kato, Y ;
Ihara, Y ;
Yamagishi, F ;
Tsukada, K ;
Isobe, M .
CANCER GENETICS AND CYTOGENETICS, 1999, 111 (02) :161-165
[7]   Enhanced phosphorylation of p53 by ATN in response to DNA damage [J].
Banin, S ;
Moyal, L ;
Shieh, SY ;
Taya, Y ;
Anderson, CW ;
Chessa, L ;
Smorodinsky, NI ;
Prives, C ;
Reiss, Y ;
Shiloh, Y ;
Ziv, Y .
SCIENCE, 1998, 281 (5383) :1674-1677
[8]   Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation [J].
Baskaran, R ;
Wood, LD ;
Whitaker, LL ;
Canman, CE ;
Morgan, SE ;
Xu, Y ;
Barlow, C ;
Baltimore, D ;
WynshawBoris, A ;
Kastan, MB ;
Wang, JYJ .
NATURE, 1997, 387 (6632) :516-519
[9]   Heteroduplex formation by human Rad51 protein: Effects of DNA end-structure, hRP-A and hRad52 [J].
Baumann, P ;
West, SC .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 291 (02) :363-374
[10]   Role of the human RAD51 protein in homologous recombination and double-stranded break repair [J].
Baumann, P ;
West, SC .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (07) :247-251