Green emission from end-group-enhanced aggregation in polydioetylfluorene

被引:88
作者
Chen, XW [1 ]
Tseng, HE [1 ]
Liao, JL [1 ]
Chen, SA [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30043, Taiwan
关键词
D O I
10.1021/jp052549w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Green emission in polyfluorenes (PFs) has been attributed to aggregation or excimer emission, but recently it was reassigned as an on-chain fluorenone defect. We show here that, in dialkyl-substituted PFs that is hydrogen-free at the 9'-position of the fluorene, blue emission with very weak green emission is observed from end-capped polydioctylfluorene (PFO) for both photoluminescence and electroluminescence spectra, while the low-energy green emission at 507 nm is very pronounced only in uncapped PFO (PFOun). The facts that there is no detectable infrared absorption at around 1721 cm(-1) due to > C=O stretching vibration in PFOun and no charge-trapping occurring in the light-emitting device from PFOun are in contrast with those found in the literature-reported copolymers with fluorenone units, which have detectable infrared absorption at 1721 cm(-1) and charge-trapping in devices. We found that this green emission at around 507 nm originates from the end-group-enhanced aggregation by use of UV-vis absorption, photoexcitation spectra, and steady-state photoluminescent and electroluminescent spectra. The end-group-enhanced aggregation is much weaker in other PFs with less-ordered structures.
引用
收藏
页码:17496 / 17502
页数:7
相关论文
共 101 条
[1]   The effect of morphology on the temperature-dependent photoluminescence quantum efficiency of the conjugated polymer poly(9, 9-dioctylfluorene) [J].
Ariu, M ;
Lidzey, DG ;
Sims, M ;
Cadby, AJ ;
Lane, PA ;
Bradley, DDC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (42) :9975-9986
[2]   Influence of film morphology on the vibrational spectra of dioctyl substituted polyfluorene (PFO) [J].
Ariu, M ;
Lidzey, DG ;
Bradley, DDC .
SYNTHETIC METALS, 2000, 111 :607-610
[3]   Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices [J].
Bliznyuk, VN ;
Carter, SA ;
Scott, JC ;
Klärner, G ;
Miller, RD ;
Miller, DC .
MACROMOLECULES, 1999, 32 (02) :361-369
[4]   Film morphology and photophysics of polyfluorene [J].
Cadby, AJ ;
Lane, PA ;
Mellor, H ;
Martin, SJ ;
Grell, M ;
Giebeler, C ;
Bradley, DDC ;
Wohlgenannt, M ;
An, C ;
Vardeny, ZV .
PHYSICAL REVIEW B, 2000, 62 (23) :15604-15609
[5]   Optical studies of photoexcitations of poly(9,9-dioctyl fluorene) [J].
Cadby, AJ ;
Lane, PA ;
Wohlgenannt, M ;
An, C ;
Vardeny, ZV ;
Bradley, DDC .
SYNTHETIC METALS, 2000, 111 :515-518
[6]   Improving efficiency by balancing carrier transport in poly(9,9-dioctylfluorene) light-emitting diodes using tetraphenylporphyrin as a hole-trapping, emissive dopant [J].
Campbell, AJ ;
Bradley, DDC ;
Virgili, T ;
Lidzey, DG ;
Antoniadis, H .
APPLIED PHYSICS LETTERS, 2001, 79 (23) :3872-3874
[7]   Ultrafast energy-transfer dynamics in a blend of electroluminescent conjugated polymers [J].
Cerullo, G ;
Nisoli, M ;
Stagira, S ;
De Silvestri, S ;
Lanzani, G ;
Graupner, W ;
List, E ;
Leising, G .
CHEMICAL PHYSICS LETTERS, 1998, 288 (2-4) :561-566
[8]  
CHANG EC, 2000, Patent No. 6127693
[9]   Degradation mechanism of phosphorescent-dye-doped polymer light-emitting diodes [J].
Chang, SC ;
He, G ;
Chen, FC ;
Guo, TF ;
Yang, Y .
APPLIED PHYSICS LETTERS, 2001, 79 (13) :2088-2090
[10]   White light emission from exciplex in a bilayer device with two blue light-emitting polymers [J].
Chao, CI ;
Chen, SA .
APPLIED PHYSICS LETTERS, 1998, 73 (04) :426-428