Progressive point set surfaces

被引:85
作者
Fleishman, S
Cohen-Or, D
Alexa, M
Silva, CT
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] Tech Univ Darmstadt, D-64283 Darmstadt, Germany
[3] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2003年 / 22卷 / 04期
关键词
algorithms; moving least squares; point-based modeling; surface representation and reconstruction;
D O I
10.1145/944020.944023
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Progressive point set surfaces (PPSS) are a multilevel point-based surface representation. They combine the usability of multilevel scalar displacement maps (e.g., compression, filtering, geometric modeling) with the generality of point-based surface representations (i.e., no fixed homology group or continuity class). The multiscale nature of PPSS fosters the idea of point-based modeling. The basic building block for the construction of PPSS is a projection operator, which maps points in the proximity of the shape onto local polynomial surface approximations. The projection operator allows the computing of displacements from smoother to more detailed levels. Based on the properties of the projection operator we derive an algorithm to construct a base point set. Starting from this base point set, a refinement rule using the projection operator constructs a PPSS from any given manifold surface.
引用
收藏
页码:997 / 1011
页数:15
相关论文
共 46 条
[1]   Computing and rendering point set surfaces [J].
Alexa, M ;
Behr, J ;
Cohen-Or, D ;
Fleishman, S ;
Levin, D ;
Silva, CT .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2003, 9 (01) :3-15
[2]  
Alexander M, 2001, INTERNETWEEK, P21
[3]  
Amenta N., 1998, Computer Graphics. Proceedings. SIGGRAPH 98 Conference Proceedings, P415, DOI 10.1145/280814.280947
[4]   Surface reconstruction by Voronoi filtering [J].
Amenta, N ;
Bern, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (04) :481-504
[5]   The ball-pivoting algorithm for surface reconstruction [J].
Bernardini, F ;
Mittleman, J ;
Rushmeier, H ;
Silva, C ;
Taubin, G .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1999, 5 (04) :349-359
[6]  
Carr JC, 2001, COMP GRAPH, P67, DOI 10.1145/383259.383266
[7]   RECURSIVELY GENERATED B-SPLINE SURFACES ON ARBITRARY TOPOLOGICAL MESHES [J].
CATMULL, E ;
CLARK, J .
COMPUTER-AIDED DESIGN, 1978, 10 (06) :350-355
[8]   Multiresolution decimation based on global error [J].
Ciampalini, A ;
Cignoni, P ;
Montani, C ;
Scopigno, R .
VISUAL COMPUTER, 1997, 13 (05) :228-246
[9]  
CIGNONI P., 1994, P 1994 S VOL VIS, P19
[10]  
Cohen J., 1996, Computer Graphics Proceedings. SIGGRAPH '96, P119, DOI 10.1145/237170.237220