Rare events and breakdown of simple scaling in the Abelian sandpile model

被引:102
作者
De Menech, M [1 ]
Stella, AL
Tebaldi, C
机构
[1] Univ Padua, Dipartimento Fis, INFM, I-35131 Padua, Italy
[2] Univ Padua, Sez INFN, I-35131 Padua, Italy
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 03期
关键词
D O I
10.1103/PhysRevE.58.R2677
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Due to intermittency and conservation, the Abelian sandpile in two dimensions obeys multifractal, rather than finite size scaling. In the thermodynamic limit, a vanishingly small fraction of large avalanches dominates the statistics and a constant gap scaling is recovered in higher moments of the toppling distribution. Thus, rare events shape most of the scaling pattern and preserve a meaning for effective exponents, which can be determined on the basis of numerical and exact results.
引用
收藏
页码:R2677 / R2680
页数:4
相关论文
共 20 条
[1]   STRUCTURE OF AVALANCHES AND BREAKDOWN OF SIMPLE SCALING IN THE ABELIAN SANDPILE MODEL IN ONE-DIMENSION [J].
ALI, AA ;
DHAR, D .
PHYSICAL REVIEW E, 1995, 52 (05) :4804-4816
[2]  
[Anonymous], RANDOM FLUCTUATIONS
[3]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[4]  
CHESSA A, CONDMAT9802123
[5]   SELF-ORGANIZED CRITICAL STATE OF SANDPILE AUTOMATON MODELS [J].
DHAR, D .
PHYSICAL REVIEW LETTERS, 1990, 64 (14) :1613-1616
[6]   MULTIFRACTALS, OPERATOR PRODUCT EXPANSION, AND FIELD-THEORY [J].
DUPLANTIER, B ;
LUDWIG, AWW .
PHYSICAL REVIEW LETTERS, 1991, 66 (03) :247-251
[7]   WAVES OF TOPPLINGS IN AN ABELIAN SANDPILE [J].
IVASHKEVICH, EV ;
KTITAREV, DV ;
PRIEZZHEV, VB .
PHYSICA A, 1994, 209 (3-4) :347-360
[8]   SCALING AND UNIVERSALITY IN AVALANCHES [J].
KADANOFF, LP ;
NAGEL, SR ;
WU, L ;
ZHOU, SM .
PHYSICAL REVIEW A, 1989, 39 (12) :6524-6537
[9]   LANDSLIDES ON SANDPILES - SOME MOMENT RELATIONS IN ONE DIMENSION [J].
KRUG, J .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) :1635-1641
[10]  
KTITAREV DV, CONDMAT9803072