共 22 条
Neonatal hypoxia-ischemia differentially upregulates MAGUKs and associated proteins in PSD-93-Deficient mouse brain
被引:26
作者:
Jiang, XN
Mu, DZ
Sheldon, RA
Glidden, DV
Ferriero, DM
机构:
[1] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
来源:
关键词:
brain injuries;
growth and development;
mice;
receptors;
N-methyl-D-aspartate;
D O I:
10.1161/01.STR.0000102560.78524.9D
中图分类号:
R74 [神经病学与精神病学];
学科分类号:
摘要:
Background and Purpose-Postsynaptic density (PSD)-93 and PSD-95 are the major membrane-associated guanylate kinases (MAGUKs) at excitatory synapses of the brain linking the N-methyl-D-aspartate receptor (NMDAR) with neuronal nitric oxide synthase (nNOS), which contributes to cell death after neonatal hypoxia-ischemia (HI). We investigated whether deletion of PSD-93 would dissociate the NMDAR from nNOS and be neuroprotective. Methods-Postnatal day 7 wild-type (+/+), heterozygous (+/-), and homozygous (-/-) PSD-93 knockout mice were subjected to HI by permanent ligation of the right carotid artery, followed by exposure to 8% O-2/92% N-2 for 1 hour. Brains were scored 5 days later for damage with cresyl violet and iron stains. Western blot and coimmunoprecipitation were used to determine the expression and association of the major PSD proteins. Results-There was no significant difference between PSD-93 (-/-) and (+/+) mice in mortality or degree of brain injury. In the absence of PSD-93, PSD-95 still interacted with NR2B and nNOS. Under physiological conditions, PSD-95, nNOS, NR2A, and NR2B were unaltered in the (-/-) pups. However, at 24 hours after HI, protein expression of PSD-95, nNOS, and NR2A but not NR2B was markedly higher in the (-/-) than in the (+/+) pups. In (+/+) pups, HI resulted in decreased expression of NR2A but not NR2B in cortex and decreased NR2A and NR2B expression in hippocampus, but this reduction was not observed in (-/-) pups. Conclusions-PSD-93 is not essential for baseline synaptic function but may participate in regulation of NMDAR-associated signaling pathways after HI injury. Deletion of PSD-93 alone does not provide neuroprotection after neonatal HI, possibly a result, in part, of upregulation of PSD-95. MAGUKs may substitute for one another, allowing normal NMDAR function in the postnatal period.
引用
收藏
页码:2958 / 2963
页数:6
相关论文