Polynomial iterative algorithms for coloring and analyzing random graphs

被引:62
作者
Braunstein, A
Mulet, R
Pagnani, A
Weigt, M
Zecchina, R
机构
[1] Abdus Salaam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[2] SISSA, I-34100 Trieste, Italy
[3] Univ Havana, IMRE, Fac Phys, Henri Poincare Chair Complex Syst, Havana 10400, Cuba
[4] Univ Havana, IMRE, Fac Phys, Superconduct Lab, Havana 10400, Cuba
[5] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[6] Univ Gottingen, Inst Theoret Phys, D-37073 Gottingen, Germany
关键词
D O I
10.1103/PhysRevE.68.036702
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the graph coloring problem over random graphs of finite average connectivity c. Given a number q of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas graphs with high connectivity are uncolorable. Depending on q, we find with a one-step replica-symmetry breaking approximation the precise value of the critical average connectivity c(q). Moreover, we show that below c(q) there exists a clustering phase cis an element of[c(d),c(q)] in which ground states spontaneously divide into an exponential number of clusters. Furthermore, we extended our considerations to the case of single instances showing consistent results. This leads us to propose a different algorithm that is able to color in polynomial time random graphs in the hard but colorable region, i.e., when cis an element of[c(d),c(q)].
引用
收藏
页数:15
相关论文
共 44 条
[1]  
ACHLIOPTAS D, 2002, UNPUB P S THEOR COMP
[2]  
[Anonymous], UNPUB
[3]   EVERY PLANAR MAP IS 4 COLORABLE .1. DISCHARGING [J].
APPEL, K ;
HAKEN, W .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :429-490
[4]   EVERY PLANAR MAP IS 4 COLORABLE .2. REDUCIBILITY [J].
APPEL, K ;
HAKEN, W ;
KOCH, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :491-567
[5]   SPIN-GLASSES - EXPERIMENTAL FACTS, THEORETICAL CONCEPTS, AND OPEN QUESTIONS [J].
BINDER, K ;
YOUNG, AP .
REVIEWS OF MODERN PHYSICS, 1986, 58 (04) :801-976
[6]  
BRAUNSTEIN A, UNPUB
[7]   REGISTER ALLOCATION VIA COLORING [J].
CHAITIN, GJ ;
AUSLANDER, MA ;
CHANDRA, AK ;
COCKE, J ;
HOPKINS, ME ;
MARKSTEIN, PW .
COMPUTER LANGUAGES, 1981, 6 (01) :47-57
[8]  
COCCO S, CONDMAT0206239
[9]   Frozen development in graph coloring [J].
Culberson, J ;
Gent, I .
THEORETICAL COMPUTER SCIENCE, 2001, 265 (1-2) :227-264
[10]  
Erdos P., 1959, Publicationes Mathematicae Debrecen, V6, P290