Polynomial iterative algorithms for coloring and analyzing random graphs

被引:62
作者
Braunstein, A
Mulet, R
Pagnani, A
Weigt, M
Zecchina, R
机构
[1] Abdus Salaam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[2] SISSA, I-34100 Trieste, Italy
[3] Univ Havana, IMRE, Fac Phys, Henri Poincare Chair Complex Syst, Havana 10400, Cuba
[4] Univ Havana, IMRE, Fac Phys, Superconduct Lab, Havana 10400, Cuba
[5] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[6] Univ Gottingen, Inst Theoret Phys, D-37073 Gottingen, Germany
关键词
D O I
10.1103/PhysRevE.68.036702
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the graph coloring problem over random graphs of finite average connectivity c. Given a number q of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas graphs with high connectivity are uncolorable. Depending on q, we find with a one-step replica-symmetry breaking approximation the precise value of the critical average connectivity c(q). Moreover, we show that below c(q) there exists a clustering phase cis an element of[c(d),c(q)] in which ground states spontaneously divide into an exponential number of clusters. Furthermore, we extended our considerations to the case of single instances showing consistent results. This leads us to propose a different algorithm that is able to color in polynomial time random graphs in the hard but colorable region, i.e., when cis an element of[c(d),c(q)].
引用
收藏
页数:15
相关论文
共 44 条
[21]   Replica symmetry breaking in short-range spin glasses: Theoretical foundations and numerical evidences [J].
Marinari, E ;
Parisi, G ;
Ricci-Tersenghi, F ;
Ruiz-Lorenzo, JJ ;
Zuliani, F .
JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (5-6) :973-1047
[22]   Computational complexity for physicists [J].
Mertens, S .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :31-47
[23]   Random K-satisfiability problem:: From an analytic solution to an efficient algorithm -: art. no. 056126 [J].
Mézard, M ;
Zecchina, R .
PHYSICAL REVIEW E, 2002, 66 (05) :27-056126
[24]   The cavity method at zero temperature [J].
Mézard, M ;
Parisi, G .
JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (1-2) :1-34
[25]   Analytic and algorithmic solution of random satisfiability problems [J].
Mézard, M ;
Parisi, G ;
Zecchina, R .
SCIENCE, 2002, 297 (5582) :812-815
[26]   The Bethe lattice spin glass revisited [J].
Mézard, M ;
Parisi, G .
EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02) :217-233
[27]  
Mezard M., 1987, SPIN GLASS THEORY
[28]  
MEZARD M, CONDMAT0207140
[29]  
Molloy M, 1996, RANDOM STRUCT ALGOR, V8, P159, DOI 10.1002/(SICI)1098-2418(199603)8:2<159::AID-RSA6>3.0.CO
[30]  
2-X