Adaptive local polynomial whittle estimation of long-range dependence

被引:69
作者
Andrews, DWK
Sun, YX
机构
[1] Yale Univ, Cowles Fdn Res Econ, New Haven, CT 06520 USA
[2] Univ Calif San Diego, Dept Econ, La Jolla, CA 92093 USA
关键词
adaptive estimator; asymptotic bias; asymptotic normality; bias reduction; local polynomial; long memory; minimax rate; optimal bandwidth; Whittle likelihood;
D O I
10.1111/j.1468-0262.2004.00501.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
The local Whittle (or Gaussian semiparametric) estimator of long range dependence, proposed by Kunsch (1987) and analyzed by Robinson (1995a), has a relatively slow rate of convergence and a finite sample bias that can be large. In this paper, we generalize the local Whittle estimator to circumvent these problems. Instead of approximating the short-run component of the spectrum, phi(lambda), by a. constant in a shrinking neighborhood of frequency zero, we approximate its logarithm by a polynomial. This leads to a "local polynomial Whittle" (LPW) estimator. We specify a data-dependent adaptive procedure that adjusts the degree of the polynomial to the smoothness of phi(lambda) at zero and selects the bandwidth. The resulting "adaptive LPW" estimator is shown to achieve the optimal rate of convergence, which depends on the smoothness of phi(lambda) at zero, up to a logarithmic factor.
引用
收藏
页码:569 / 614
页数:46
相关论文
共 33 条
[1]   A bias-reduced log-periodogram regression estimator for the long-memory parameter [J].
Andrews, DWK ;
Guggenberger, P .
ECONOMETRICA, 2003, 71 (02) :675-712
[2]  
ANDREWS DWK, 2001, 1293 YAL U
[3]  
[Anonymous], 1993, Journal of Time Series Analysis
[4]  
BERAN J, 1993, BIOMETRIKA, V80, P817, DOI 10.2307/2336873
[5]  
Brillinger DR., 1975, TIME SERIES DATA ANA
[6]  
CROWDER MJ, 1976, J ROY STAT SOC B MET, V38, P45
[7]  
Diggle P., 1990, Time series: A biostatistical introduction
[8]   DESIGN-ADAPTIVE NONPARAMETRIC REGRESSION [J].
FAN, JQ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (420) :998-1004
[9]   LARGE-SAMPLE PROPERTIES OF PARAMETER ESTIMATES FOR STRONGLY DEPENDENT STATIONARY GAUSSIAN TIME-SERIES [J].
FOX, R ;
TAQQU, MS .
ANNALS OF STATISTICS, 1986, 14 (02) :517-532
[10]  
Geweke J., 1983, J TIME SER ANAL, V4, P221, DOI [DOI 10.1111/J.1467-9892.1983.TB00371.X, 10.1111/j.1467-9892.1983.tb00371.x]