Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: Similarities and differences

被引:104
作者
Best, Robert B. [2 ]
Mittal, Jeetain [1 ]
机构
[1] Lehigh Univ, Dept Chem Engn, Bethlehem, PA 18015 USA
[2] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
关键词
protein folding; molecular simulations; protein force field; Free-energy landscape; MOLECULAR-DYNAMICS SIMULATIONS; PROTEIN-FOLDING SIMULATIONS; BETA-HAIRPIN; TRP-CAGE; CHEMICAL-SHIFTS; UNFOLDED STATE; WATER MODEL; RESP MODEL; B1; DOMAIN; MECHANISM;
D O I
10.1002/prot.22972
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although it is now possible to fold peptides and miniproteins in molecular dynamics simulations, it is well appreciated that force fields are not all transferable to different proteins. Here, we investigate the influence of the protein force field and the solvent model on the folding energy landscape of a prototypical two-state folder, the GB1 hairpin. We use extensive replica-exchange molecular dynamics simulations to characterize the free-energy surface as a function of temperature. Most of these force fields appear similar at a global level, giving a fraction folded at 300 K between 0.2 and 0.8 in all cases, which is a difference in stability of 2.8 kT, and are generally consistent with experimental data at this temperature. The most significant differences appear in the unfolded state, where there are different residual secondary structures which are populated, and the overall dimensions of the unfolded states, which in most of the force fields are too collapsed relative to experimental Forster Resonance Energy Transfer (FRET) data.
引用
收藏
页码:1318 / 1328
页数:11
相关论文
共 72 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   Protein folding pathways from replica exchange simulations and a kinetic network model [J].
Andrec, M ;
Felts, AK ;
Gallicchio, E ;
Levy, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (19) :6801-6806
[3]   Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions [J].
Bai, YW ;
Chung, J ;
Dyson, HJ ;
Wright, PE .
PROTEIN SCIENCE, 2001, 10 (05) :1056-1066
[4]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[5]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[6]  
BERENDSEN HJC, 1981, J INTERMOLECULAR FOR
[7]   Are current molecular dynamics force fields too helical? [J].
Best, Robert B. ;
Buchete, Nicolae-Viorel ;
Hummer, Gerhard .
BIOPHYSICAL JOURNAL, 2008, 95 (01) :L7-L9
[8]   Effect of flexibility and cis residues in single-molecule FRET studies of polyproline [J].
Best, Robert B. ;
Merchant, Kusai A. ;
Gopich, Irina V. ;
Schuler, Benjamin ;
Bax, Ad ;
Eaton, William A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (48) :18964-18969
[9]   Protein Simulations with an Optimized Water Model: Cooperative Helix Formation and Temperature-Induced Unfolded State Collapse [J].
Best, Robert B. ;
Mittal, Jeetain .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (46) :14916-14923
[10]   Balance between a and β Structures in Ab Initio Protein Folding [J].
Best, Robert B. ;
Mittal, Jeetain .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (26) :8790-8798