Balance between a and β Structures in Ab Initio Protein Folding

被引:94
作者
Best, Robert B. [1 ]
Mittal, Jeetain [2 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Lehigh Univ, Dept Chem Engn, Bethlehem, PA 18015 USA
关键词
MOLECULAR-DYNAMICS SIMULATIONS; FREE-ENERGY LANDSCAPE; FORCE-FIELD PARAMETERS; REPLICA-EXCHANGE SIMULATIONS; TRP-CAGE MINIPROTEIN; EXPLICIT SOLVENT; HAIRPIN FORMATION; UNFOLDED PROTEINS; DATA-BANK; IMPLICIT SOLVENT;
D O I
10.1021/jp102575b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite initial successes in folding of proteins by molecular simulation, it is becoming increasingly evident that current energy functions (force fields) tend to favor either alpha or beta secondary structure, such that the choice of force field is governed by the structural class of the protein. Here, we study the folding of peptides with either predominantly alpha (Trp cage) or beta (GB I hairpin) structure with a modified version of the Amber ff03 force field, optimized to reproduce structural propensity in a helix-forming peptide. Using extensive replica exchange molecular dynamics simulations starting from completely unfolded configurations, we obtain the correct folded structure for each peptide, in close agreement with the experimental native structure (<1.5 angstrom all-atom root-mean-square deviation). We obtain converged equilibrium distributions, with folded populations at standard conditions (approximate to 300 K), in remarkable accord with experiment. Further comparison to experimental data from NMR spectroscopy and FRET suggests that although the folded structures are accurately reproduced, the unfolded state remains too structured and compact. Our results suggest that the backbone correction results in a force field that is transferable to the folding of proteins from different structural classes.
引用
收藏
页码:8790 / 8798
页数:9
相关论文
共 90 条
[1]   UV-resonance Raman thermal unfolding study of Trp-cage shows that it is not a simple two-state miniprotein [J].
Ahmed, Z ;
Beta, IA ;
Mikhonin, AV ;
Asher, SA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (31) :10943-10950
[2]   Protein folding pathways from replica exchange simulations and a kinetic network model [J].
Andrec, M ;
Felts, AK ;
Gallicchio, E ;
Levy, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (19) :6801-6806
[3]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[4]   Reaction coordinates and rates from transition paths [J].
Best, RB ;
Hummer, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (19) :6732-6737
[5]   Are current molecular dynamics force fields too helical? [J].
Best, Robert B. ;
Buchete, Nicolae-Viorel ;
Hummer, Gerhard .
BIOPHYSICAL JOURNAL, 2008, 95 (01) :L7-L9
[6]   Effect of flexibility and cis residues in single-molecule FRET studies of polyproline [J].
Best, Robert B. ;
Merchant, Kusai A. ;
Gopich, Irina V. ;
Schuler, Benjamin ;
Bax, Ad ;
Eaton, William A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (48) :18964-18969
[7]   Coordinate-dependent diffusion in protein folding [J].
Best, Robert B. ;
Hummer, Gerhard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (03) :1088-1093
[8]   Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides [J].
Best, Robert B. ;
Hummer, Gerhard .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (26) :9004-9015
[9]   A SHORT LINEAR PEPTIDE THAT FOLDS INTO A NATIVE STABLE BETA-HAIRPIN IN AQUEOUS-SOLUTION [J].
BLANCO, FJ ;
RIVAS, G ;
SERRANO, L .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (09) :584-590
[10]   Kinetic pathways of β-hairpin (Un)folding in explicit solvent [J].
Bolhuis, PG .
BIOPHYSICAL JOURNAL, 2005, 88 (01) :50-61