Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping

被引:299
作者
Calamante, Fernando [1 ]
Tournier, Jacques-Donald
Jackson, Graeme D.
Connelly, Alan
机构
[1] Brain Res Inst, Florey Neurosci Inst Austin, Heidelberg West, Vic 3081, Australia
基金
英国医学研究理事会;
关键词
Magnetic resonance imaging; Super-resolution; White matter; Fiber-tracking; Diffusion MRI; IN-DIFFUSION MRI; SPHERICAL DECONVOLUTION; FIBER; ORIENTATION; TRACTOGRAPHY; RESOLUTION; TISSUES; IMAGES;
D O I
10.1016/j.neuroimage.2010.07.024
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuroimaging advances have given rise to major progress in neurosciences and neurology, as ever more subtle and specific imaging methods reveal new aspects of the brain. One major limitation of current methods is the spatial scale of the information available. We present an approach to gain spatial resolution using post-processing methods based on diffusion MRI fiber-tracking, to reveal structures beyond the resolution of the acquired imaging voxel: we term such a method as super-resolution track-density imaging (TDI). A major unmet challenge in imaging is the identification of abnormalities in white matter as a cause of illness; super-resolution TDI is shown to produce high-quality white matter images, with high spatial resolution and outstanding anatomical contrast. A unique property of these maps is demonstrated: their spatial resolution and signal-to-noise ratio can be tailored depending on the chosen image resolution and total number of fiber-tracks generated. Super-resolution TDI should greatly enhance the study of white matter in disorders of the brain and mind. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1233 / 1243
页数:11
相关论文
共 31 条
[1]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[2]   What's New in Neuroimaging Methods? [J].
Bandettini, Peter A. .
YEAR IN COGNITIVE NEUROSCIENCE 2009, 2009, 1156 :260-293
[3]   Inferring microstructural features and the physiological state of tissues from diffusion-weighted images [J].
Basser, PJ .
NMR IN BIOMEDICINE, 1995, 8 (7-8) :333-344
[4]   Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? [J].
Behrens, T. E. J. ;
Berg, H. Johansen ;
Jbabdi, S. ;
Rushworth, M. F. S. ;
Woolrich, M. W. .
NEUROIMAGE, 2007, 34 (01) :144-155
[5]   Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging [J].
Behrens, TEJ ;
Johansen-Berg, H ;
Woolrich, MW ;
Smith, SM ;
Wheeler-Kingshott, CAM ;
Boulby, PA ;
Barker, GJ ;
Sillery, EL ;
Sheehan, K ;
Ciccarelli, O ;
Thompson, AJ ;
Brady, JM ;
Matthews, PM .
NATURE NEUROSCIENCE, 2003, 6 (07) :750-757
[6]  
CALAMANTE F, 2009, P 17 ANN M INT SOC M, V17, P1442
[7]   High-field MRI of brain cortical substructure based on signal phase [J].
Duyn, Jeff H. ;
van Gelderen, Peter ;
Li, Tie-Qiang ;
de Zwart, Jacco A. ;
Koretsky, Alan P. ;
Fukunaga, Masaki .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (28) :11796-11801
[8]  
EMBLETON KV, 2007, P 15 ANN M INT SOC M, V15, P1548
[9]  
Gillard J., 2005, Clinical MR Neuroimaging, Diffusion, Perfusion and Spectroscopy
[10]   MRI inter-slice reconstruction using super-resolution [J].
Greenspan, H ;
Oz, G ;
Kiryati, N ;
Peled, S .
MAGNETIC RESONANCE IMAGING, 2002, 20 (05) :437-446