High-field MRI of brain cortical substructure based on signal phase

被引:536
作者
Duyn, Jeff H. [1 ]
van Gelderen, Peter [1 ]
Li, Tie-Qiang [1 ]
de Zwart, Jacco A. [1 ]
Koretsky, Alan P. [1 ]
Fukunaga, Masaki [1 ]
机构
[1] Natl Inst Neurol Disorders & Stroke, Lab Funct & Mol Imaging, Lab Adv MRI, NIH, Bethesda, MD 20892 USA
关键词
anatomy; contrast mechanism; cortex;
D O I
10.1073/pnas.0610821104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to detect brain anatomy and pathophysiology with MRI is limited by the contrast-to-noise ratio (CNR), which depends on the contrast mechanism used and the spatial resolution. In this work, we show that in MRI of the human brain, large improvements in contrast to noise in high-resolution images are possible by exploiting the MRI signal phase at high magnetic field strength. Using gradient-echo MRI at 7.0 tesla and a multichannel detector, a nominal voxel size of 0.24 x 0.24 x 1.0 mm(3) (58 nl was achieved. At this resolution, a strong phase contrast was observed both between as well as within gray matter (GM) and white matter (WM). In gradient-echo phase images obtained on normal volunteers at this high resolution, the CNR between GM and WM ranged from 3:1 to 20:1 over the cortex. This CNR is an almost 10-fold improvement over conventional MRI techniques that do not use image phase, and it is an approximate to 100-fold improvement when including the gains in resolution from high-field and multichannel detection. Within WM, phase contrast appeared to be associated with the major fiber bundles, whereas contrast within GM was suggestive of the underlying layer structure. The observed phase contrast is attributed to local variations in magnetic susceptibility, which, at least in part, appeared to originate from iron stores. The ability to detect cortical substructure from MRI phase contrast at high field is expected to greatly enhance the study of human brain anatomy in vivo.
引用
收藏
页码:11796 / 11801
页数:6
相关论文
共 66 条
[1]   Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high-field magnetic resonance imaging [J].
Abduljalil, AM ;
Schmalbrock, P ;
Novak, V ;
Chakeres, DW .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2003, 18 (03) :284-290
[2]   A myelo-architectonic method for the structural classification of cortical areas [J].
Annese, J ;
Pitiot, A ;
Dinov, ID ;
Toga, AW .
NEUROIMAGE, 2004, 21 (01) :15-26
[3]   Detection of entorhinal layer II using tesla magnetic resonance imaging [J].
Augustinack, JC ;
van der Kouwe, AJW ;
Blackwell, ML ;
Salat, DH ;
Wiggins, CJ ;
Frosch, MP ;
Wiggins, GC ;
Potthast, A ;
Wald, LL ;
Fischl, BR .
ANNALS OF NEUROLOGY, 2005, 57 (04) :489-494
[4]   Imaging cortical anatomy by high-resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17 [J].
Barbier, EL ;
Marrett, S ;
Danek, A ;
Vortmeyer, A ;
van Gelderen, P ;
Duyn, J ;
Bandettini, P ;
Grafman, J ;
Koretskyk, AP .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (04) :735-738
[5]   Detection of neuritic plaques in Alzheimer's disease by magnetic resonance microscopy [J].
Benveniste, H ;
Einstein, G ;
Kim, KR ;
Hulette, C ;
Johnson, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :14079-14084
[6]   ROLE OF IRON AND FERRITIN IN MR IMAGING OF THE BRAIN - A STUDY IN PRIMATES AT DIFFERENT FIELD STRENGTHS [J].
BIZZI, A ;
BROOKS, RA ;
BRUNETTI, A ;
HILL, JM ;
ALGER, JR ;
MILETICH, RS ;
FRANCAVILLA, TL ;
DICHIRO, G .
RADIOLOGY, 1990, 177 (01) :59-65
[7]   Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex [J].
Bridge, H ;
Clare, S ;
Jenkinson, M ;
Jezzard, P ;
Parker, AJ ;
Matthews, PM .
JOURNAL OF VISION, 2005, 5 (02) :93-102
[8]  
Brodmann K., 1909, LOKALISATIONSLEHRE G
[9]   High resolution MRI of the deep brain vascular anatomy at 8 tesla: Susceptibility-based enhancement of the venous structures [J].
Christoforidis, GA ;
Bourekas, EC ;
Baujan, M ;
Abduljalil, AM ;
Kangarlu, A ;
Spigos, DG ;
Chakeres, DW ;
Robitaille, PML .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1999, 23 (06) :857-866
[10]   Ferritin subunits in CSF are decreased in restless legs syndrome [J].
Clardy, SL ;
Earley, CJ ;
Allen, RP ;
Beard, JL ;
Connor, JR .
JOURNAL OF LABORATORY AND CLINICAL MEDICINE, 2006, 147 (02) :67-73