Identifying tumor cells at the single-cell level using machine learning

被引:33
作者
Dohmen, Jan [1 ]
Baranovskii, Artem [2 ,3 ]
Ronen, Jonathan [1 ]
Uyar, Bora [1 ]
Franke, Vedran [1 ]
Akalin, Altuna [1 ]
机构
[1] Max Delbruck Ctr Mol Med Helmholtz Assoc MDC, Berlin Inst Med Syst Biol, Bioinformat & Omics Data Sci Platform, Hannoversche Str 28, D-10115 Berlin, Germany
[2] Berlin Inst Med Syst Biol, Noncoding RNAs & Mech Cytoplasm Gene Regulat Lab, Hannoversche Str 28, D-10115 Berlin, Germany
[3] Free Univ Berlin, Kaiserswerther Str 16-18, D-14195 Berlin, Germany
关键词
Single-cell genomics; Machine learning; Cell type classification; Cancer; GENE-EXPRESSION; RNA-SEQ;
D O I
10.1186/s13059-022-02683-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Tumors are complex tissues of cancerous cells surrounded by a heterogeneous cellular microenvironment with which they interact. Single-cell sequencing enables molecular characterization of single cells within the tumor. However, cell annotation-the assignment of cell type or cell state to each sequenced cell-is a challenge, especially identifying tumor cells within single-cell or spatial sequencing experiments. Here, we propose ikarus, a machine learning pipeline aimed at distinguishing tumor cells from normal cells at the single-cell level. We test ikarus on multiple single-cell datasets, showing that it achieves high sensitivity and specificity in multiple experimental contexts.
引用
收藏
页数:23
相关论文
共 66 条
[1]   A comparison of automatic cell identification methods for single-cell RNA sequencing data [J].
Abdelaal, Tamim ;
Michielsen, Lieke ;
Cats, Davy ;
Hoogduin, Dylan ;
Mei, Hailiang ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
GENOME BIOLOGY, 2019, 20 (01)
[2]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[3]   Interpretation of T cell states from single-cell transcriptomics data using reference atlases [J].
Andreatta, Massimo ;
Corria-Osorio, Jesus ;
Muller, Soren ;
Cubas, Rafael ;
Coukos, George ;
Carmona, Santiago J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]  
[Anonymous], 2018, F1000Research
[5]   Computational principles and challenges in single-cell data integration [J].
Argelaguet, Ricard ;
Cuomo, Anna S. E. ;
Stegle, Oliver ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2021, 39 (10) :1202-1215
[6]   Applicability of spatial transcriptional profiling to cancer research [J].
Bassiouni, Rania ;
Gibbs, Lee D. ;
Craig, David W. ;
Carpten, John D. ;
McEachron, Troy A. .
MOLECULAR CELL, 2021, 81 (08) :1631-1639
[7]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[8]   The single-cell transcriptional landscape of lung carcinoid tumors [J].
Bischoff, Philip ;
Trinks, Alexandra ;
Wiederspahn, Jennifer ;
Obermayer, Benedikt ;
Pett, Jan Patrick ;
Jurmeister, Philipp ;
Elsner, Aron ;
Dziodzio, Tomasz ;
Rueckert, Jens-Carsten ;
Neudecker, Jens ;
Falk, Christine ;
Beule, Dieter ;
Sers, Christine ;
Morkel, Markus ;
Horst, David ;
Klauschen, Frederick ;
Bluethgen, Nils .
INTERNATIONAL JOURNAL OF CANCER, 2022, 150 (12) :2058-2071
[9]  
Borcherding N., 2021, ESCAPE EASY SINGLE C
[10]   MARS: discovering novel cell types across heterogeneous single-cell experiments [J].
Brbic, Maria ;
Zitnik, Marinka ;
Wang, Sheng ;
Pisco, Angela O. ;
Altman, Russ B. ;
Darmanis, Spyros ;
Leskovec, Jure .
NATURE METHODS, 2020, 17 (12) :1200-+