MARS: discovering novel cell types across heterogeneous single-cell experiments

被引:100
作者
Brbic, Maria [1 ]
Zitnik, Marinka [2 ]
Wang, Sheng [3 ]
Pisco, Angela O. [4 ]
Altman, Russ B. [3 ,4 ]
Darmanis, Spyros [4 ]
Leskovec, Jure [1 ,4 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Harvard Univ, Dept Biomed Informat, Boston, MA 02115 USA
[3] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[4] Chan Zuckerberg Biohub, San Francisco, CA USA
基金
美国国家科学基金会;
关键词
FIBROBLASTS;
D O I
10.1038/s41592-020-00979-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
MARS uses a meta-learning strategy for annotating known cell types and identifying novel ones across single-cell RNA-seq datasets. Although tremendous effort has been put into cell-type annotation, identification of previously uncharacterized cell types in heterogeneous single-cell RNA-seq data remains a challenge. Here we present MARS, a meta-learning approach for identifying and annotating known as well as new cell types. MARS overcomes the heterogeneity of cell types by transferring latent cell representations across multiple datasets. MARS uses deep learning to learn a cell embedding function as well as a set of landmarks in the cell embedding space. The method has a unique ability to discover cell types that have never been seen before and annotate experiments that are as yet unannotated. We apply MARS to a large mouse cell atlas and show its ability to accurately identify cell types, even when it has never seen them before. Further, MARS automatically generates interpretable names for new cell types by probabilistically defining a cell type in the embedding space.
引用
收藏
页码:1200 / +
页数:22
相关论文
共 47 条
[1]   A comparison of automatic cell identification methods for single-cell RNA sequencing data [J].
Abdelaal, Tamim ;
Michielsen, Lieke ;
Cats, Davy ;
Hoogduin, Dylan ;
Mei, Hailiang ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
GENOME BIOLOGY, 2019, 20 (01)
[2]   Cell type discovery using single-cell transcriptomics: implications for ontological representation [J].
Aevermann, Brian D. ;
Novotny, Mark ;
Bakken, Trygve ;
Miller, Jeremy A. ;
Diehl, Alexander D. ;
Osumi-Sutherland, David ;
Lasken, Roger S. ;
Lein, Ed S. ;
Scheuermann, Richard H. .
HUMAN MOLECULAR GENETICS, 2018, 27 (R1) :R40-R47
[3]   AGE-ASSOCIATED IMPAIRMENT OF MURINE NATURAL-KILLER ACTIVITY [J].
ALBRIGHT, JW ;
ALBRIGHT, JF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (20) :6371-6375
[4]   Exploring single-cell data with deep multitasking neural networks [J].
Amodio, Matthew ;
van Dijk, David ;
Srinivasan, Krishnan ;
Chen, William S. ;
Mohsen, Hussein ;
Moon, Kevin R. ;
Campbell, Allison ;
Zhao, Yujiao ;
Wang, Xiaomei ;
Venkataswamy, Manjunatha ;
Desai, Anita ;
Ravi, V. ;
Kumar, Priti ;
Montgomery, Ruth ;
Wolf, Guy ;
Krishnaswamy, Smita .
NATURE METHODS, 2019, 16 (11) :1139-+
[5]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[6]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[7]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[8]   Interpretable dimensionality reduction of single cell transcriptome data with deep generative models [J].
Ding, Jiarui ;
Condon, Anne ;
Shah, Sohrab P. .
NATURE COMMUNICATIONS, 2018, 9
[9]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]  
Finn C, 2017, PR MACH LEARN RES, V70