Analyzing for information, not activation, to exploit high-resolution fMRI

被引:198
作者
Kriegeskorte, Nikolaus [1 ]
Bandettini, Peter [1 ]
机构
[1] NIH, Sect Funct Imaging Methods, Lab Brain & Cognit, Bethesda, MD 20892 USA
关键词
D O I
10.1016/j.neuroimage.2007.02.022
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
High-resolution functional magnetic resonance imaging (hi-res fMRI) promises to help bridge the gap between the macro- and the microview of brain function afforded by conventional neuroimaging and invasive cell recording, respectively. Hi-res fMRI (voxel volume:5 (2 MM)3) is robustly achievable in human studies today using widely available clinical 3-Tesla scanners. However, the neuroscientific exploitation of the greater spatial detail poses four challenges: (1) Hi-res fMRI may give inaccurate (i.e. blurred, displaced and distorted) images of fine-scale neuronal activity patterns. (2) Single small voxels yield very noisy measurements. (3) The greater number of voxels complicates interpretation and poses a more severe multiple-comparisons problem. (4) The functional correspondency mapping between individual brains is unknown at the fine scale of millimeters. Here we argue that these challenges can be met by shifting the focus of brain mapping and visualizing, not the activity patterns themselves, but the amount of information they convey about the experimental conditions. Published by Elsevier Inc.
引用
收藏
页码:649 / 662
页数:14
相关论文
共 68 条
[31]   Distributed and overlapping representations of faces and objects in ventral temporal cortex [J].
Haxby, JV ;
Gobbini, MI ;
Furey, ML ;
Ishai, A ;
Schouten, JL ;
Pietrini, P .
SCIENCE, 2001, 293 (5539) :2425-2430
[32]   Predicting the orientation of invisible stimuli from activity in human primary visual cortex [J].
Haynes, JD ;
Rees, G .
NATURE NEUROSCIENCE, 2005, 8 (05) :686-691
[33]   Decoding mental states from brain activity in humans [J].
Haynes, John-Dylan ;
Rees, Geraint .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (07) :523-534
[34]   High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels [J].
Hyde, JS ;
Biswal, BB ;
Jesmanowicz, A .
MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (01) :114-125
[35]   Decoding the visual and subjective contents of the human brain [J].
Kamitani, Y ;
Tong, F .
NATURE NEUROSCIENCE, 2005, 8 (05) :679-685
[36]  
Kanwisher N, 1997, J NEUROSCI, V17, P4302
[37]   High-resolution mapping of iso-orientation columns by fMRI [J].
Kim, DS ;
Duong, TQ ;
Kim, SG .
NATURE NEUROSCIENCE, 2000, 3 (02) :164-169
[38]   QUANTIFICATION OF RELATIVE CEREBRAL BLOOD-FLOW CHANGE BY FLOW-SENSITIVE ALTERNATING INVERSION-RECOVERY (FAIR) TECHNIQUE - APPLICATION TO FUNCTIONAL MAPPING [J].
KIM, SG .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (03) :293-301
[39]   SELF-ORGANIZED FORMATION OF TOPOLOGICALLY CORRECT FEATURE MAPS [J].
KOHONEN, T .
BIOLOGICAL CYBERNETICS, 1982, 43 (01) :59-69
[40]  
Kraskov A, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066138