Malaria stratification, climate, and epidemic early warning in Eritrea

被引:52
作者
Ceccato, Pietro [1 ]
Ghebremeskel, Tewolde
Jaiteh, Malanding
Graves, Patricia M.
Levy, Marc
Ghebreselassie, Shashu
Ogbamariam, Andom
Barnston, Anthony G.
Bell, Michael
del Corral, John
Connor, Stephen J.
Fesseha, Issac
Brantly, Eugene P.
Thomson, Madeleine C.
机构
[1] Columbia Univ, Int Res Inst Climate & Soc, Earth Inst, Palisades, NY 10964 USA
关键词
D O I
10.4269/ajtmh.2007.77.61
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Eritrea has a successful malaria control program, but it is still susceptible to devastating malaria epidemics. Monthly data on clinical malaria cases from 242 health facilities in 58 subzobas (districts) of Eritrea from 1996 to 2003 were used in a novel stratification process using; principal component analysis and nonhierarchical clustering to define five areas with distinct malaria intensity and seasonality patterns, to guide future interventions and development of an epidemic early warning system. Relationships between monthly clinical malaria incidence by subzoba and monthly climate data from several sources, and with seasonal climate forecasts, were investigated. Remotely sensed climate data were averaged over the same subzoba geographic administrative units as the malaria cases. Although correlation was good between malaria anomalies and actual rainfall from ground stations (lagged by 2 months), the stations did not have sufficiently even coverage to be widely useful. Satellite derived rainfall from the Climate Prediction Center Merged Analysis of Precipitation was correlated with malaria incidence anomalies, with a lead time of 2-3 months. NDVI anomalies were highly correlated with malaria incidence anomalies, particularly in the semi-arid north of the country and along the northern Red Sea coast, which is a highly epidemic-prone area. Eritrea has 2 distinct rainy seasons in different parts of the country. The seasonal forecasting skill from Global Circulation Models for the June/July/August season was low except for the Eastern border. For the coastal October/November/December season, forecasting skill was good only during the 1997-1998 El Nino event. For epidemic control, shorter-range warning based on remotely sensed rainfall estimates and an enhanced epidemic early-detection system based on data derived for this study are needed.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 37 条
[1]  
Allard R, 1998, B WORLD HEALTH ORGAN, V76, P327
[2]   Interannual variability of NDVI over Africa and its relation to El Nino Southern Oscillation [J].
Anyamba, A ;
Eastman, JR .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (13) :2533-2548
[3]  
Booman M, 2000, B WORLD HEALTH ORGAN, V78, P1438
[4]   Use of clinical algorithms for diagnosing malaria [J].
Chandramohan, D ;
Jaffar, S ;
Greenwood, B .
TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2002, 7 (01) :45-52
[5]   Design and implementation of a health management information system in Malawi: issues, innovations and results [J].
Chaulagai, CN ;
Moyo, CM ;
Koot, J ;
Moyo, HBM ;
Sambakunsi, TC ;
Khunga, FM ;
Naphini, PD .
HEALTH POLICY AND PLANNING, 2005, 20 (06) :375-384
[6]   Analysing the quality of routine malaria data in Mozambique [J].
Chilundo, B ;
Sundby, J ;
Aanestad, M .
MALARIA JOURNAL, 2004, 3 (1)
[7]   A climate-based distribution model of malaria transmission in sub-Saharan Africa [J].
Craig, MH ;
Snow, RW ;
le Sueur, D .
PARASITOLOGY TODAY, 1999, 15 (03) :105-111
[8]   Improving epidemic malaria planning, preparedness and response in Southern Africa [J].
DaSilva, J ;
Garanganga, B ;
Teveredzi, V ;
Marx, SM ;
Mason, SJ ;
Connor, SJ .
MALARIA JOURNAL, 2004, 3 (1)
[9]   ON THE RELATION BETWEEN RAINFALL AND THE NORMALIZED DIFFERENCE VEGETATION INDEX FOR DIVERSE VEGETATION TYPES IN EAST-AFRICA [J].
DAVENPORT, ML ;
NICHOLSON, SE .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1993, 14 (12) :2369-2389
[10]  
Di Gregorio A., 2000, LAND COVER CLASSIFIC