At the dawn of a new era in terahertz technology

被引:196
作者
Hosako, Iwao [1 ]
Sekine, Norihiko
Patrashin, Mikhail
Saito, Shingo
Fukunaga, Kaori
Kasai, Yasuko
Baron, Philippe
Seta, Takamasa
Mendrok, Jana
Ochiai, Satoshi
Yasuda, Hiroaki
机构
[1] Natl Inst Informat & Commun Technol, Tokyo 184, Japan
[2] Natl Inst Informat & Commun Technol, Kobe, Hyogo 651, Japan
关键词
array detector; atmospheric propagation; material database; quantum cascade laser; terahertz electromagnetic wave; terahertz-range quantum well photodetector; terahertz time domain spectroscopy;
D O I
10.1109/JPROC.2007.898844
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The National institute of Information and Communications Technology (NICT, Japan) started the Terahertz Project in April 2006. its fundamental purpose in the next five years is to enable a nationwide technical infrastructure to be created for diverse applications of terahertz technology. The technical infrastructure includes the development of semiconductor devices such as telrahertz quantum cascade lasers, terahertz-range quantum well photodetectors, and high-precision tunable continuous wave sources. it also includes pulsed terahertz measurement systems, modeling and measurement of atmospheric propagation, and the establishment of a framework to construct a materials database in the terahertz range including standardization of the measurement protocol. These are common technical infrastructure even in any terahertz systems. In this article, we report the current status of developments in these fields such as terahertz quantum cascade lasers (THz-QCLs) (with peak power of 30 mW, 3.1 THz), terahertz-range quantum well photocletectors (THz-QWPs) (tuned at 3 THz) an ultrawideband terahertz time domain spectroscopy (THz-TDS) system (with measurement range of from 0.1 to 15 THz), an example of a database for materials of fine art, and results obtained from measuring atmospheric propagation.
引用
收藏
页码:1611 / 1623
页数:13
相关论文
共 78 条
[1]   InGaAs-AlInAs/InP terahertz quantum cascade laser [J].
Ajili, L ;
Scalari, G ;
Hoyler, N ;
Giovannini, M ;
Faist, J .
APPLIED PHYSICS LETTERS, 2005, 87 (14) :1-3
[2]  
ALDROVANDI A, 1996, OPD RESTAURO, V8, P191
[3]   PICOSECOND PHOTOCONDUCTING HERTZIAN DIPOLES [J].
AUSTON, DH ;
CHEUNG, KP ;
SMITH, PR .
APPLIED PHYSICS LETTERS, 1984, 45 (03) :284-286
[4]   Label-free probing of the binding state of DNA by time-domain terahertz sensing [J].
Brucherseifer, M ;
Nagel, M ;
Bolivar, PH ;
Kurz, H ;
Bosserhoff, A ;
Büttner, R .
APPLIED PHYSICS LETTERS, 2000, 77 (24) :4049-4051
[5]  
Burch D.E., 1980, ATMOSPHERIC WATER VA
[6]   Far-infrared foreign and self-broadened rotational linewidths of high-temperature water vapor [J].
Cheville, RA ;
Grischkowsky, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (02) :317-322
[7]  
Clough S. A., 1989, Atmos. Res, V23, P229, DOI [DOI 10.1016/0169-8095(89)90020-3, 10.1016/0169-8095(89)90020-3]
[8]   LINE-BY-LINE CALCULATIONS OF ATMOSPHERIC FLUXES AND COOLING RATES - APPLICATION TO WATER-VAPOR [J].
CLOUGH, SA ;
IACONO, MJ ;
MONCET, JL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D14) :15761-15785
[9]  
CLOUGH SA, 1981, P SOC PHOTO-OPT INST, V277, P152
[10]   THE FAR-INFRARED CONTINUUM ABSORPTION OF WATER-VAPOR [J].
DAVIS, GR .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1993, 50 (06) :673-694