Conductance quantization and snake states in graphene magnetic waveguides

被引:104
作者
Ghosh, T. K. [1 ]
De Martino, A. [1 ]
Haeusler, W. [1 ]
Dell'Anna, L. [1 ]
Egger, R.
机构
[1] Univ Dusseldorf, Inst Theoret Phys, D-40225 Dusseldorf, Germany
关键词
D O I
10.1103/PhysRevB.77.081404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider electron waveguides (quantum wires) in graphene created by suitable inhomogeneous magnetic fields. The properties of unidirectional snake states are discussed. For a certain magnetic field profile, two spatially separated counterpropagating snake states are formed, leading to conductance quantization insensitive to backscattering by impurities or irregularities of the magnetic field.
引用
收藏
页数:4
相关论文
共 35 条
[1]   Spin-filtered edge states and quantum hall effect in graphene [J].
Abanin, DA ;
Lee, PA ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 2006, 96 (17)
[2]   GROUND-STATE OF A SPIN-1-2 CHARGED-PARTICLE IN A 2-DIMENSIONAL MAGNETIC-FIELD [J].
AHARONOV, Y ;
CASHER, A .
PHYSICAL REVIEW A, 1979, 19 (06) :2461-2462
[3]  
Ashcroft N W., 1976, Solid State Physics
[4]  
BADALYAN SM, 2001, PHYS REV B, V64, P5420
[5]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[6]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[7]   Effect of edge transmission and elastic scattering on the resistance of magnetic barriers: Experiment and theory [J].
Cerchez, M. ;
Hugger, S. ;
Heinzel, T. ;
Schulz, N. .
PHYSICAL REVIEW B, 2007, 75 (03)
[8]   Chiral Luttinger liquids at the fractional quantum Hall edge [J].
Chang, AM .
REVIEWS OF MODERN PHYSICS, 2003, 75 (04) :1449-1505
[9]   Magnetic confinement of massless Dirac fermions in graphene [J].
De Martino, A. ;
Dell'Anna, L. ;
Egger, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[10]   Pauli operator and Aharonov-Casher theorem for measure valued magnetic fields [J].
Erdos, L ;
Vougalter, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (02) :399-421