Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking

被引:86
作者
Abanades, Stephane [1 ]
Flamant, Gilles [1 ]
机构
[1] CNRS, UPR 8521, PROMES, Proc Mat & Solar Energy Lab, F-66120 Odeillo Font Romeu, France
关键词
hydrogen; solar thermal energy; methane; cracking; solar reactor; CFD model; AEROSOL FLOW REACTOR; NATURAL-GAS; THERMAL-DECOMPOSITION; CARBON PARTICLES; DISSOCIATION; PYROLYSIS;
D O I
10.1016/j.ijhydene.2006.10.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high-temperature fluid-wall solar reactor was developed for the production of hydrogen from methane cracking. This laboratory-scale reactor features a graphite tubular cavity directly heated by concentrated solar energy, in which the reactive flowing gas dissociates to form hydrogen and carbon black. The solar reactor characterization was achieved with: (a) a thorough experimental study on the reactor performance versus operating conditions and (b) solar reactor modeling. The results showed that the conversion of CH4 and yield of H-2 can exceed 97% and 90%, respectively, and these depend strongly on temperature and on fluid-wall heat transfer and reaction surface area. In addition to the experimental study, a 2D computational model coupling transport phenomena was developed to predict the mapping of reactor temperature and of species concentration, and the reaction extent at the outlet. The model was validated and kinetics of methane decomposition were identified from simulations and comparison to experimental results. (C) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1508 / 1515
页数:8
相关论文
共 15 条
[1]   Production of hydrogen by thermal methane splitting in a nozzle-type laboratory-scale solar reactor [J].
Abanades, S ;
Flamant, G .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (08) :843-853
[2]   Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor [J].
Dahl, JK ;
Buechler, KJ ;
Finley, R ;
Stanislaus, T ;
Weimer, AW ;
Lewandowski, A ;
Bingham, C ;
Smeets, A ;
Schneider, A .
ENERGY, 2004, 29 (5-6) :715-725
[3]   Solar-thermal dissociation of methane in a fluid-wall aerosol flow reactor [J].
Dahl, JK ;
Buechler, KJ ;
Weimer, AW ;
Lewandowski, A ;
Bingham, C .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (07) :725-736
[4]   Intrinsic kinetics for rapid decomposition of methane in an aerosol flow reactor [J].
Dahl, JK ;
Barocas, VH ;
Clough, DE ;
Weimer, AW .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (04) :377-386
[5]   Comparison of simple particle-radiation coupling models applied on a plasma black process [J].
Gonzalez-Aguilar, J ;
Dème, I ;
Fulcheri, L ;
Flamant, G ;
Gruenberger, TM ;
Ravary, B .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2004, 24 (04) :603-623
[6]   THERMAL COUPLING OF METHANE - INFLUENCE OF HYDROGEN AT 1330-DEGREES-C - EXPERIMENTAL AND SIMULATED RESULTS [J].
GUERET, C ;
BILLAUD, F .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1994, 29 (02) :183-205
[7]   Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor [J].
Hirsch, D ;
Steinfeld, A .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (01) :47-55
[8]   PYROLYSIS OF NATURAL-GAS - CHEMISTRY AND PROCESS CONCEPTS [J].
HOLMEN, A ;
OLSVIK, O ;
ROKSTAD, OA .
FUEL PROCESSING TECHNOLOGY, 1995, 42 (2-3) :249-267
[9]   HIGH-TEMPERATURE PYROLYSIS OF HYDROCARBONS .1. METHANE TO ACETYLENE [J].
HOLMEN, A ;
ROKSTAD, OA ;
SOLBAKKEN, A .
INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1976, 15 (03) :439-444
[10]   Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study [J].
Kim, MH ;
Lee, EK ;
Jun, JH ;
Kong, SJ ;
Han, GY ;
Lee, BK ;
Lee, TJ ;
Yoon, KJ .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (02) :187-193