Infrared spectroscopy of carbon materials:: A quantum chemical study of model compounds

被引:343
作者
Fuente, E
Menéndez, JA
Díez, MA
Suárez, D
Montes-Morán, MA
机构
[1] CSIC, Inst Nacl Carbon, E-33080 Oviedo, Spain
[2] Univ Oviedo, Dept Quim Fis & Analit, Oviedo 33006, Spain
关键词
D O I
10.1021/jp027482g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present work reports a theoretical study of the infrared spectra of chemical structures that are suitable to the description of the surface chemistry of carbon materials. Prior to any consideration, the computational approach was tested and adapted by comparing the predicted IR spectra to those obtained experimentally for various reference compounds. Several models were considered, subsequently accounting for the most relevant functional groups that have been postulated to decorate the edges of graphene layers on carbon materials (i.e., anhydrides, carboxyls, lactones, phenolic, quinones, and pyrones). For each of the previous functional groups, different structures involving a different number of fused rings were considered. This strategy allowed us to establish the effect of conjugation on the shift of the IR frequencies corresponding to a given functional group. Cooperative effects between different functional groups (phenol-carboxyl, phenol-lactone, and so on) were another aspect that revealed itself to be an interesting issue when assigning frequencies in the IR spectra of highly oxidized carbon materials. Thus, it was found that the frequencies of the C=O bonds present in acid functional groups were systematically lowered when phenolic groups were close enough to establish hydrogen bonds. Special attention was also paid to the elucidation of the origin of the 1600-cm(-1) band of carbons. It was found that, in the case of acid carbons, this band can be assigned to C=C stretching of carbon rings decorated mainly with phenolic groups. Cyclic ethers in basic carbons would also promote absorption in the 1600-cm(-1) region of the IR spectrum. Finally, the predicted assignments are employed to interpret the IR spectra obtained experimentally for several activated carbons.
引用
收藏
页码:6350 / 6359
页数:10
相关论文
共 32 条
[11]   Comparison of the performance of local, gradient-corrected, and hybrid density functional models in predicting infrared intensities [J].
Halls, MD ;
Schlegel, HB .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (24) :10587-10593
[12]  
HERHE WJ, 1986, AB INITIO MOL ORBITA
[13]   Compositional and structural changes during aerial oxidation of coal and their relations with technological properties [J].
Iglesias, MJ ;
de la Puente, G ;
Fuente, E ;
Pis, JJ .
VIBRATIONAL SPECTROSCOPY, 1998, 17 (01) :41-52
[14]   SURFACE OXIDE STRUCTURES ON A COMMERCIAL ACTIVATED CARBON [J].
ISHIZAKI, C ;
MARTI, I .
CARBON, 1981, 19 (06) :409-412
[15]  
LEON CALY, 1994, CHEM PHYS CARBON, V24, P213
[16]  
MCHALE JL, 1998, MOL SPECTROSCOPY
[17]   Changes in surface chemistry of activated carbons by wet oxidation [J].
Moreno-Castilla, C ;
López-Ramón, MV ;
Carrasco-Marín, F .
CARBON, 2000, 38 (14) :1995-2001
[18]  
PEEBLES LH, 1995, CARBON FIBERS
[19]  
Radovic LR, 1997, CHEM PHYS CARBON, V25, P243
[20]  
Radovic LR, 2001, CHEM PHYS CARBON, V27, P227