Energetic factors governing injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers

被引:123
作者
Barea, Eva M. [1 ]
Ortiz, Javier [2 ]
Paya, Federico J. [2 ]
Fernandez-Lazaro, Fernando [2 ]
Fabregat-Santiago, Francisco [1 ]
Sastre-Santos, Angela [2 ]
Bisquert, Juan [1 ]
机构
[1] Univ Jaume 1, Grp Dispositius Fotovolta & Optoelect, Dept Fis, Castellon de La Plana 12071, Spain
[2] Univ Miguel Hernandez, Div Quim Organ, Inst Bioingn, Elche 03202, Spain
关键词
NANOCRYSTALLINE TIO2 FILMS; INTERFACIAL ELECTRON-TRANSFER; NEAR-IR SENSITIZATION; IMPEDANCE SPECTROSCOPY; ZINC PHTHALOCYANINE; CAPACITANCE; EFFICIENCY; KINETICS; STATES; SEMICONDUCTORS;
D O I
10.1039/c0ee00185f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phthalocyanines (Pcs) are promising candidates for photon collectors for the near-infrared region of the solar spectrum in dye solar cells (DSC). Using two new Pc sensitizers, differing only in their Zn or metal-free center, we discuss the behaviour of the Pc dyes as sensitizers in DSC, and their influence on the solar cell performance, in comparison with standard N719 dye, at identical electrolyte conditions. Based on the separate identification of recombination resistance and the energy levels of titania by impedance spectroscopy, we determine the recombination rates and we also map the energies of the relevant components of the solar cells. An integration of the absorbance of the three sensitizers with the solar spectral distribution shows that electron injection should be similar for all the dyes (although 20% less in the case of the Pc with Zn center). However, since the LUMO level of these Pcs is low on the energy scale, it is necessary to use an electrolyte that keeps the conduction band of titania down to obtain some injection from the Pcs. Hence, the photovoltage is limited because the conduction band of titania is at a much lower position than in normal DSCs. We find that the conduction band of titania with the metal-free Pc is located on a similar energy level as for N719, and the recombination rate is not significantly different from the N719 cell. The main reason for the lower performance of this Pc is the lower injection than the ruthenium complex. In the case of the ZnPc, the conduction band is at higher energy than for N719. This allows that the V-oc obtained in these two samples becomes nearly the same despite the lower electron injection in the Zn phthalocyanines.
引用
收藏
页码:1985 / 1994
页数:10
相关论文
共 48 条
[1]   Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Pitarch, A ;
Bolink, HJ .
CHEMICAL PHYSICS LETTERS, 2006, 422 (1-3) :184-191
[2]   Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells [J].
Bisquert, J ;
Cahen, D ;
Hodes, G ;
Rühle, S ;
Zaban, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (24) :8106-8118
[3]   Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells [J].
Bisquert, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (24) :5360-5364
[4]   Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells.: Nonequilibrium steady-state statistics and interfacial electron transfer via surface states [J].
Bisquert, J ;
Zaban, A ;
Salvador, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (34) :8774-8782
[5]  
BISQUERT J, 2006, P SPIE INT SOC OPT E, P6192
[6]   A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors [J].
Bisquert, Juan ;
Fabregat-Santiago, Francisco ;
Mora-Sero, Ivan ;
Garcia-Belmonte, Germa ;
Barea, Eva M. ;
Palomares, Emilio .
INORGANICA CHIMICA ACTA, 2008, 361 (03) :684-698
[7]   Effect of energy disorder in interfacial kinetics of dye-sensitized solar cells with organic hole transport material [J].
Bisquert, Juan ;
Palomares, Emilio ;
Quinones, Cesar A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (39) :19406-19411
[8]   Simulation of Steady-State Characteristics of Dye-Sensitized Solar Cells and the Interpretation of the Diffusion Length [J].
Bisquert, Juan ;
Mora-Sero, Ivan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (01) :450-456
[9]   Photoinduced absorption spectroscopy of dye-sensitized nanostructured TiO2 [J].
Boschloo, G ;
Hagfeldt, A .
CHEMICAL PHYSICS LETTERS, 2003, 370 (3-4) :381-386
[10]   Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells [J].
Boschloo, Gerrit ;
Hagfeldt, Anders .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1819-1826