Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals

被引:553
作者
Acharya, U. Rajendra [1 ,2 ,3 ]
Fujita, Hamido [4 ]
Oh, Shu Lih [1 ]
Hagiwara, Yuki [1 ]
Tan, Jen Hong [1 ]
Adam, Muhammad [1 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore, Singapore
[2] Singapore Univ Social Sci, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[3] Univ Malaya, Fac Engn, Dept Biomed Engn, Kuala Lumpur, Malaysia
[4] IPU, Fac Software & Informat Sci, Takizawa, Iwate 0200693, Japan
关键词
Convolution neural network; Deep learning; Electrocardiogram signals; Myocardial infarction; SEGMENTATION; LOCALIZATION; IMAGES;
D O I
10.1016/j.ins.2017.06.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The electrocardiogram (ECG) is a useful diagnostic tool to diagnose various cardiovascular diseases (CVDs) such as myocardial infarction (MI). The ECG records the heart's electrical activity and these signals are able to reflect the abnormal activity of the heart. However, it is challenging to visually interpret the ECG signals due to its small amplitude and duration. Therefore, we propose a novel approach to automatically detect the MI using ECG signals. In this study, we implemented a convolutional neural network (CNN) algorithm for the automated detection of a normal and MI ECG beats (with noise and without noise). We achieved an average accuracy of 93.53% and 95.22% using ECG beats with noise and without noise removal respectively. Further, no feature extraction or selection is performed in this work. Hence, our proposed algorithm can accurately detect the unknown ECG signals even with noise. So, this system can be introduced in clinical settings to aid the clinicians in the diagnosis of MI. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:190 / 198
页数:9
相关论文
共 38 条
[1]   Study of heart rate variability signals at sitting and lying postures [J].
Acharya, Rajendra U. ;
Kannathal, N. ;
Hua, Lee Mei ;
Yi, Leong Mei .
JOURNAL OF BODYWORK AND MOVEMENT THERAPIES, 2005, 9 (02) :134-141
[2]   Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 405 :81-90
[3]   Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Adam, Muhammad ;
Lih, Oh Shu ;
Sudarshan, Vidya K. ;
Hong, Tan Jen ;
Koh, Joel E. W. ;
Hagiwara, Yuki ;
Chua, Chua K. ;
Poo, Chua Kok ;
San, Tan Ru .
INFORMATION SCIENCES, 2017, 377 :17-29
[4]   Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Sudarshan, Vidya K. ;
Oh, Shu Lih ;
Adam, Muhammad ;
Koh, Joel E. W. ;
Tan, Jen Hong ;
Ghista, Dhanjoo N. ;
Martis, Roshan Joy ;
Chua, Chua K. ;
Poo, Chua Kok ;
Tan, Ru San .
KNOWLEDGE-BASED SYSTEMS, 2016, 99 :146-156
[5]  
[Anonymous], WHAT IS HEART ATT
[6]  
[Anonymous], 2014, JBiSE, DOI DOI 10.4236/JBISE.2014.710081
[7]  
[Anonymous], 2016, DEEP LEARNING
[8]  
[Anonymous], 2015, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2015.123
[9]  
[Anonymous], HEART ATTACK MYOCARD
[10]   Detection and Localization of Myocardial Infarction using K-nearest Neighbor Classifier [J].
Arif, Muhammad ;
Malagore, Ijaz A. ;
Afsar, Fayyaz A. .
JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (01) :279-289