Long-term in vivo gene expression via delivery of PEI-DNA condensates from porous polymer scaffolds

被引:78
作者
Huang, YC
Riddle, K
Rice, KG
Mooney, DJ
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[4] Univ Iowa, Coll Pharm, Iowa City, IA 52242 USA
关键词
D O I
10.1089/hum.2005.16.609
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nonviral delivery vectors are attractive for gene therapy approaches in tissue engineering, but suffer from low transfection efficiency and short-term gene expression. We hypothesized that the sustained delivery of poly(ethylenimine) (PEI)-condensed DNA from three-dimensional biodegradable scaffolds that encourage cell infiltration could greatly enhance gene expression. To test this hypothesis, a PEI-condensed plasmid encoding beta-galactosidase was incorporated into porous poly(lactide-co-glycolide) (PLG) scaffolds, using a gas foaming process. Four conditions were examined: condensed DNA and uncondensed DNA encapsulated into PLG scaffolds, blank scaffolds, and bolus delivery of condensed DNA in combination with implantation of PLG scaffolds. Implantation of scaffolds incorporating condensed beta-galactosidase plasmid into the subcutaneous tissue of rats resulted in a high level of gene expression for the entire 15-week duration of the experiment, as exemplified by extensive positive staining for beta-galactosidase gene expression observed on the exterior surface and throughout the cross-sections of the explanted scaffolds. No positive staining could be observed for the control conditions either on the exterior surface or in the cross-section at 8- and 15-week time points. In addition, a high percentage (55-60%) of cells within scaffolds incorporating condensed DNA at 15 weeks demonstrated expression of the DNA, confirming the sustained uptake and expression of the encapsulated plasmid DNA. Quantitative analysis of beta-galactosidase gene expression revealed that expression levels in scaffolds incorporating condensed DNA were one order of magnitude higher than those of other conditions at the 2-week time point and nearly two orders of magnitude higher than those of the control conditions at the 8- and 15-week time points. This study demonstrated that the sustained delivery of PEI-condensed plasmid DNA from PLG scaffolds led to an in vivo long-term and high level of gene expression, and this system may find application in areas such as bone tissue engineering.
引用
收藏
页码:609 / 617
页数:9
相关论文
共 57 条
[1]   Expression of biologically active human insulin-like growth factor-I following intramuscular injection of a formulated plasmid in rats [J].
Alila, H ;
Coleman, M ;
Nitta, H ;
French, M ;
Anwer, K ;
Liu, QS ;
Meyer, T ;
Wang, JJ ;
Mumper, R ;
Oubari, D ;
Long, S ;
Nordstrom, J ;
Rolland, A .
HUMAN GENE THERAPY, 1997, 8 (15) :1785-1795
[2]   Toward cell-targeting gene therapy vectors: Selection of cell-binding peptides from random peptide-presenting phage libraries [J].
Barry, MA ;
Dower, WJ ;
Johnston, SA .
NATURE MEDICINE, 1996, 2 (03) :299-305
[3]   Different strategies for formation of PEGylated EGF-conjugated PEI/DNA complexes for targeted gene delivery [J].
Blessing, T ;
Kursa, M ;
Holzhauser, R ;
Kircheis, R ;
Wagner, E .
BIOCONJUGATE CHEMISTRY, 2001, 12 (04) :529-537
[4]   Nonviral gene delivery to the rat kidney with polyethylenimine [J].
Boletta, A ;
Benigni, A ;
Lutz, J ;
Remuzzi, G ;
Soria, MR ;
Monaco, L .
HUMAN GENE THERAPY, 1997, 8 (10) :1243-1251
[5]   Tissue engineering via local gene delivery [J].
Bonadio, J .
JOURNAL OF MOLECULAR MEDICINE-JMM, 2000, 78 (06) :303-311
[6]   Localized, direct plasmid gene delivery in vivo:: prolonged therapy results in reproducible tissue regeneration [J].
Bonadio, J ;
Smiley, E ;
Patil, P ;
Goldstein, S .
NATURE MEDICINE, 1999, 5 (07) :753-759
[7]   Gene therapy for tissue repair and regeneration [J].
Bonadio, J ;
Goldstein, SA ;
Levy, RJ .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 33 (1-2) :53-69
[8]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[9]  
Boussif O, 1996, GENE THER, V3, P1074
[10]   Biomaterial developments for bone tissue engineering [J].
Burg, KJL ;
Porter, S ;
Kellam, JF .
BIOMATERIALS, 2000, 21 (23) :2347-2359