Differential expression analysis for sequence count data

被引:10049
作者
Anders, Simon [1 ]
Huber, Wolfgang [1 ]
机构
[1] European Mol Biol Lab, D-69117 Heidelberg, Germany
来源
GENOME BIOLOGY | 2010年 / 11卷 / 10期
关键词
NEGATIVE BINOMIAL DISPERSION; RNA-SEQ; BIOCONDUCTOR; PACKAGE;
D O I
10.1186/gb-2010-11-10-r106
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.
引用
收藏
页数:12
相关论文
共 36 条
[31]  
Smyth GK., 2004, Statistical Applications in Genetics and Molecular Biology, P3, DOI [10.2202/1544-6115.1027, DOI 10.2202/1544-6115.1027]
[32]   DEGseq: an R package for identifying differentially expressed genes from RNA-seq data [J].
Wang, Likun ;
Feng, Zhixing ;
Wang, Xi ;
Wang, Xiaowo ;
Zhang, Xuegong .
BIOINFORMATICS, 2010, 26 (01) :136-138
[33]   On the Poisson law of small numbers [J].
Whitaker, L .
BIOMETRIKA, 1914, 10 :36-71
[34]  
LOCFIT LOCAL REGRESS
[35]  
R LANGUAGE ENV STAT
[36]  
FAST ACCURATE COMPUT