Antiferromagnetic resonance in methylaminated potassium fulleride (CH3NH2)K3C60

被引:7
作者
Arcon, Denis [1 ,2 ]
Pregelj, Matej [1 ]
Zorko, Andrej [1 ]
Ganin, Alexey Yu. [3 ]
Rosseinsky, Matthew J. [3 ]
Takabayashi, Yasuhiro [4 ]
Prassides, Kosmas [4 ]
van Tol, Hans [5 ]
Brunel, L. -C. [5 ]
机构
[1] Jozef Stefan Inst, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[3] Univ Liverpool, Dept Chem, Liverpool L69 7ZD, Merseyside, England
[4] Univ Durham, Dept Chem, Durham DH1 3LE, England
[5] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
来源
PHYSICAL REVIEW B | 2008年 / 77卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevB.77.035104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-frequency magnetic resonance measurements (nu(L)=9.6-420 GHz) were employed to investigate the low-temperature antiferromagnetic ground state of the (CH(3)NH(2))K(3)C(60) fulleride. The frequency and temperature dependence of the intensity, linewidth, and center of the resonance signal detected below T(N) are characteristic of antiferromagnetic resonance (AFMR). The AFMR intensity is consistent with an ordered magnetic moment of mu(eff)=0.7(1)mu(B)/C(60), while the narrowing of the AFMR signal with increasing resonance frequency can be modeled with a spin-flop field of H(sf)=840(80) G and a g-factor anisotropy of delta gamma=710(50) ppm. We stress that the spin-flop field is reduced compared to the ammoniated analog (NH(3))K(3)C(60) on the account of reduced C(60)(3-)-C(60)(3-) exchange interactions. Differences in the level of the anisotropic expansion between CH(3)NH(2) and NH(3) cointercalated fullerides are likely to be responsible for the differences in the electronic structure between the two systems and ultimately may account for the reduced Neel temperature in (CH(3)NH(2))K(3)C(60).
引用
收藏
页数:6
相关论文
共 27 条
[1]  
ABRAGAM A, 1986, PRINCIPLES NUCLEAR M, P107
[2]   Metal-insulator transition and molecular dynamics in (NH3)K3C60 [J].
Allen, KM ;
Hayes, SJ ;
Rosseinsky, MJ .
JOURNAL OF MATERIALS CHEMISTRY, 1996, 6 (08) :1445-1447
[3]   Jahn-Teller effect in the organic ferromagnet TDAE-C60 [J].
Arcon, D ;
Jeglic, P ;
Apih, T ;
Omerzu, A ;
Blinc, R .
CARBON, 2004, 42 (5-6) :1175-1178
[4]   Low temperature magnetic instabilities in triply charged fulleride polymers [J].
Arcon, D ;
Prassides, K ;
Maniero, AL ;
Brunel, LC .
PHYSICAL REVIEW LETTERS, 2000, 84 (03) :562-565
[5]   Antiferromagnetic ordering in the expanded (NH3)Rb3C60 fulleride [J].
Arvanitidis, J ;
Papagelis, K ;
Takenobu, T ;
Margiolaki, I ;
Brigatti, K ;
Prassides, K ;
Iwasa, Y ;
Lappas, A .
PHYSICA B-CONDENSED MATTER, 2003, 326 (1-4) :572-576
[6]   Ground state of orthorhombic RbC60:: A high-field electron-spin-resonance investigation [J].
Bennati, M ;
Griffin, RG ;
Knorr, S ;
Grupp, A ;
Mehring, M .
PHYSICAL REVIEW B, 1998, 58 (23) :15603-15608
[7]   Beltlike C60- electron spin density distribution in the organic ferromagnet TDAE-C60 -: art. no. 086402 [J].
Blinc, R ;
Jeglic, P ;
Apih, T ;
Seliger, J ;
Arcon, D ;
Omerzu, A .
PHYSICAL REVIEW LETTERS, 2002, 88 (08) :4
[8]   The Mott-Hubbard insulating state and orbital degeneracy in the superconducting C603- fulleride family [J].
Durand, P ;
Darling, GR ;
Dubitsky, Y ;
Zaopo, A ;
Rosseinsky, MJ .
NATURE MATERIALS, 2003, 2 (09) :605-610
[9]   RELATION OF STRUCTURE AND SUPERCONDUCTING TRANSITION-TEMPERATURES IN A3C60 [J].
FLEMING, RM ;
RAMIREZ, AP ;
ROSSEINSKY, MJ ;
MURPHY, DW ;
HADDON, RC ;
ZAHURAK, SM ;
MAKHIJA, AV .
NATURE, 1991, 352 (6338) :787-788
[10]   EPR analysis of spin susceptibility and line width in the hyperexpanded fulleride (CH3NH2)K3C60 [J].
Ganin, Alexey Yu. ;
Takabayashi, Yasuhiro ;
Pregelj, Matej ;
Zorko, Andrej ;
Arcon, Denis ;
Rosseinsky, Matthew J. ;
Prassides, Kosmas .
CHEMISTRY OF MATERIALS, 2007, 19 (13) :3177-3182