Closed-loop fault diagnosis based on a nonlinear process model and automatic fuzzy rule generation

被引:21
作者
Ballé, P
Fuessel, D
机构
[1] Tech Univ Darmstadt, Inst Automat Control, D-64283 Darmstadt, Germany
[2] Westend Carree, D-60322 Frankfurt, Germany
关键词
fault detection; fault diagnosis; fuzzy classification; fuzzy model; closed-loop supervision;
D O I
10.1016/S0952-1976(00)00049-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this contribution a new approach for fault detection and diagnosis (FDD) for nonlinear processes is presented. A nonlinear fuzzy model with transparent inner structure is used for the generation of relevant symptoms. The resulting symptom patterns are classified with a new self-learning classification structure based on fuzzy rules. The approach is successfully applied to an electropneumatic valve in a closed control loop. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:695 / 704
页数:10
相关论文
共 18 条
[11]  
ISERMANN R, 1994, IFAC S SAFEPROCESS 9
[12]   SELECTING FUZZY IF-THEN RULES FOR CLASSIFICATION PROBLEMS USING GENETIC ALGORITHMS [J].
ISHIBUCHI, H ;
NOZAKI, K ;
YAMAMOTO, N ;
TANAKA, H .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (03) :260-270
[13]  
Jang J-S.R., 1997, NEUROFUZZY SOFT COMP
[14]  
NAUCK D, 1993, FUZZY NEURAL NETWORK
[15]  
NELLES O, 1999, NONLINEAR SYSTEM IDE
[16]  
PATTERSON DL, 1994, INSIGHTS ALLERGY, V9, P1
[17]   APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN-PROCESS FAULT-DIAGNOSIS [J].
SORSA, T ;
KOIVO, HN .
AUTOMATICA, 1993, 29 (04) :843-849
[18]  
SORSA T, 1993, TOOLDIAG 93 TOUL F, P160