Probability density estimation using adaptive activation function neurons

被引:16
作者
Fiori, S
Bucciarelli, P
机构
[1] Univ Perugia, Neural Networks & Adapt Syst Res Grp, Dept Ind Engn, Perugia, Italy
[2] Univ Ulm, Zent Inst Biomed Tech, Ulm, Germany
关键词
adaptive activation function neurons; cumulative distribution function; differential entropy; probability density function; stochastic gradient;
D O I
10.1023/A:1009635129159
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we deal with the problem of approximating the probability density function of a signal by means of adaptive activation function neurons. We compare the proposed approach to the one based on a mixture of kernels and show through computer simulations that comparable results may be obtained with limited expense in computational efforts.
引用
收藏
页码:31 / 42
页数:12
相关论文
共 20 条
[1]  
[Anonymous], ADAPTIVE PATTERN REC
[2]  
ARAM Y, 1994, CIS9420 ISR I TECHN
[3]   Efficient minimisation of the KL distance for the approximation of posterior conditional probabilities [J].
Battisti, M ;
Burrascano, P ;
Pirollo, D .
NEURAL PROCESSING LETTERS, 1997, 5 (01) :47-55
[4]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[5]  
BIANCHI A, 1999, P EL NOND EV ENDE 99, P81
[6]   A feedforward neural network with function shape autotuning [J].
Chen, CT ;
Chang, WD .
NEURAL NETWORKS, 1996, 9 (04) :627-641
[7]   Entropy optimization by the PFANN network: application to blind source separation [J].
Fiori, S .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1999, 10 (02) :171-186
[8]  
FIORI S, 1999, IN PRESS P INT JOINT
[9]  
GUSTAFFSON M, 1998, P INT C ART NEUR NET, V2, P869
[10]   Probability density estimation using entropy maximization [J].
Miller, G ;
Horn, D .
NEURAL COMPUTATION, 1998, 10 (07) :1925-1938