Probability density estimation using adaptive activation function neurons

被引:16
作者
Fiori, S
Bucciarelli, P
机构
[1] Univ Perugia, Neural Networks & Adapt Syst Res Grp, Dept Ind Engn, Perugia, Italy
[2] Univ Ulm, Zent Inst Biomed Tech, Ulm, Germany
关键词
adaptive activation function neurons; cumulative distribution function; differential entropy; probability density function; stochastic gradient;
D O I
10.1023/A:1009635129159
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we deal with the problem of approximating the probability density function of a signal by means of adaptive activation function neurons. We compare the proposed approach to the one based on a mixture of kernels and show through computer simulations that comparable results may be obtained with limited expense in computational efforts.
引用
收藏
页码:31 / 42
页数:12
相关论文
共 20 条
[11]   Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates [J].
Ormoneit, D ;
Tresp, V .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (04) :639-650
[12]  
ROHATGI VK, 1984, STAT INFERENCE
[13]   Multidimensional density shaping by sigmoids [J].
Roth, Z ;
Baram, Y .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (05) :1291-1298
[14]  
SUDJIANTO A, 1994, P IEEE ICNN, V2, P1247
[15]  
Taleb A, 1997, ARTIFICIAL NEURAL NE, P529
[16]   Neural network controller with flexible structure based on feedback-error-learning approach [J].
Teshnehlab, M ;
Watanabe, K .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 1996, 15 (04) :367-387
[17]   A kurtosis-based dynamic approach to Gaussian mixture modeling [J].
Vlassis, N ;
Likas, A .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 1999, 29 (04) :393-399
[18]   Mixture density estimation based on maximum likelihood and sequential test statistics [J].
Vlassis, NA ;
Papakonstantinou, G ;
Tsanakas, P .
NEURAL PROCESSING LETTERS, 1999, 9 (01) :63-76
[19]   Learned parametric mixture based ICA algorithm [J].
Xu, L ;
Cheung, CC ;
Amari, S .
NEUROCOMPUTING, 1998, 22 (1-3) :69-80
[20]  
ZURADA JM, 1992, INTRO NEURAL ARTIFIC