Nanoscale solid-state quantum computing

被引:47
作者
Ardavan, A
Austwick, M
Benjamin, SC
Briggs, GAD
Dennis, TJS
Ferguson, A
Hasko, DG
Kanai, M
Khlobystov, AN
Lovett, BW
Morley, GW
Oliver, RA
Pettifor, DG
Porfyrakis, K
Reina, JH
Rice, JH
Smith, JD
Taylor, RA
Williams, DA
Adelmann, C
Mariette, H
Hamers, RJ
机构
[1] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[3] Univ London, Queen Mary, Dept Chem, London E1 4NS, England
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[5] Hitachi Cambridge Lab, Cambridge CB3 0HE, England
[6] CEA Grenoble, F-38054 Grenoble 9, France
[7] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2003年 / 361卷 / 1808期
关键词
quantum computing; nanomaterials; quantum dots; nanotubes; endohedral fullerenes; global addressing;
D O I
10.1098/rsta.2003.1214
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most experts agree that it is too early to say how quantum computers will eventually be built, and several nanoscale solid-state schemes are being implemented in a range of materials. Nanofabricated quantum dots can be made in designer configurations, with established technology for controlling interactions and for reading out results. Epitaxial quantum dots can be grown in vertical arrays in semiconductors, and ultrafast optical techniques are available for controlling and measuring their excitations. Single-walled carbon nanotubes can be used for molecular self-assembly of endohedral fullerenes, which can embody quantum information in the electron spin. The challenges of individual addressing in such tiny structures could rapidly become intractable with increasing numbers of qubits, but these schemes are amenable to global addressing methods for computation.
引用
收藏
页码:1473 / 1485
页数:13
相关论文
共 37 条
  • [1] Single electron charging in parallel coupled quantum dots
    Adourian, AS
    Livermore, C
    Westervelt, RM
    Campman, KL
    Gossard, AC
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 1996, 20 (03) : 411 - 417
  • [2] Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots -: art. no. 041308
    Bayer, M
    Forchel, A
    [J]. PHYSICAL REVIEW B, 2002, 65 (04) : 1 - 4
  • [3] Schemes for parallel quantum computation without local control of qubits
    Benjamin, SC
    [J]. PHYSICAL REVIEW A, 2000, 61 (02): : 4
  • [4] BENJAMIN SC, 2002, PHYS REV LETT, V88, P7994
  • [5] Formation of a coherent mode in a double quantum dot
    Blick, RH
    Pfannkuche, D
    Haug, RJ
    von Klitzing, K
    Eberl, K
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (18) : 4032 - 4035
  • [6] Ultralong dephasing time in InGaAs quantum dots
    Borri, P
    Langbein, W
    Schneider, S
    Woggon, U
    Sellin, RL
    Ouyang, D
    Bimberg, D
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (15) : 157401 - 157401
  • [7] Hole transport in coupled SiGe quantum dots for quantum computation
    Cain, PA
    Ahmed, H
    Williams, DA
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 92 (01) : 346 - 350
  • [8] D'Amico I, 2002, PHYS STATUS SOLIDI B, V233, P377, DOI 10.1002/1521-3951(200210)233:3<377::AID-PSSB377>3.0.CO
  • [9] 2-3
  • [10] Chromatographic separation of N@C60/C60 and N@C70/C70 mixtures
    Goedde, B
    Jakes, P
    Waiblinger, M
    Dinse, KP
    Weidinger, A
    [J]. FULLERENE SCIENCE AND TECHNOLOGY, 2001, 9 (03): : 329 - 337