Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source

被引:161
作者
Declercq, H
Van den Vreken, N
De Maeyer, E
Verbeeck, R
Schacht, E
De Ridder, L
Cornelissen, M
机构
[1] State Univ Ghent, Dept Anat Embryol Histol & Med Phys, B-9000 Ghent, Belgium
[2] State Univ Ghent, Dept Dent Mat Sci, B-9000 Ghent, Belgium
[3] FSR, Flanders, Belgium
[4] State Univ Ghent, Polymer Mat Res Grp, B-9000 Ghent, Belgium
关键词
cell culture; cell proliferation; osteogenesis; osteoblast; alkaline phosphatase; calcification;
D O I
10.1016/S0142-9612(03)00580-5
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A sufficient amount of easily obtained and well-characterized ostcoblastic cells is a useful tool to study biomaterial/cell interactions essential for bone tissue engineering. Osteoblastic cells were derived from adult and fetal rat via different isolation techniques. The isolation and in vitro proliferation of primary cultures were compared. The osteogenic potential of subcultures was studied by culturing them in osteogenic medium and compared with respect to alkaline phosphatase activity, nodule formation and mineralization potential. Calvaria cells were easier to obtain and the amount of cells released by enzymatic isolation was higher than for the long bone cells. The expansion of the cells in primary culture was highest for fetal calvaria cells compared to fetal and adult long bone cells. All cultures expressed high alkaline phosphatase activity except for calvaria cells obtained by spontaneous outgrowth. Enzymatic isolation of fetal calvaria and long bone cells favoured the osteogenic differentiation. Enzymatically isolated calvaria cells formed well-defined three-dimensional nodules which mineralized restricted to this area. On the contrary, cultures derived from fetal as well as adult long bones mineralized in ill-defined deposits throughout the culture and only formed occasionally nodular-like structures. The mineral phase of all osteoblastic cultures was identified as a carbonate-containing apatite. The present study demonstrates that considering the isolation method, proliferation capacity and the osteogenic potential, the enzymatically released fetal calvaria cells are most satisfactory to study cell/biomaterial interactions. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:757 / 768
页数:12
相关论文
共 35 条
[1]   An in vitro model for mineralization of human osteoblast-like cells on implant materials [J].
Ahmad, M ;
McCarthy, M ;
Gronowicz, G .
BIOMATERIALS, 1999, 20 (03) :211-220
[2]   FACTORS THAT PROMOTE PROGRESSIVE DEVELOPMENT OF THE OSTEOBLAST PHENOTYPE IN CULTURED FETAL-RAT CALVARIA CELLS [J].
ARONOW, MA ;
GERSTENFELD, LC ;
OWEN, TA ;
TASSINARI, MS ;
STEIN, GS ;
LIAN, JB .
JOURNAL OF CELLULAR PHYSIOLOGY, 1990, 143 (02) :213-221
[3]  
AUBIN JE, 1998, MARROW STROMAL CELL
[4]   MINERALIZED BONE NODULES FORMED INVITRO FROM ENZYMATICALLY RELEASED RAT CALVARIA CELL-POPULATIONS [J].
BELLOWS, CG ;
AUBIN, JE ;
HEERSCHE, JNM ;
ANTOSZ, ME .
CALCIFIED TISSUE INTERNATIONAL, 1986, 38 (03) :143-154
[5]   INORGANIC-PHOSPHATE ADDED EXOGENOUSLY OR RELEASED FROM BETA-GLYCEROPHOSPHATE INITIATES MINERALIZATION OF OSTEOID NODULES INVITRO [J].
BELLOWS, CG ;
HEERSCHE, JNM ;
AUBIN, JE .
BONE AND MINERAL, 1992, 17 (01) :15-29
[6]   INITIATION AND PROGRESSION OF MINERALIZATION OF BONE NODULES FORMED INVITRO - THE ROLE OF ALKALINE-PHOSPHATASE AND ORGANIC PHOSPHATE [J].
BELLOWS, CG ;
AUBIN, JE ;
HEERSCHE, JNM .
BONE AND MINERAL, 1991, 14 (01) :27-40
[7]   PHYSIOLOGICAL CONCENTRATIONS OF GLUCOCORTICOIDS STIMULATE FORMATION OF BONE NODULES FROM ISOLATED RAT CALVARIA CELLS-INVITRO [J].
BELLOWS, CG ;
AUBIN, JE ;
HEERSCHE, JNM .
ENDOCRINOLOGY, 1987, 121 (06) :1985-1992
[8]   FORMATION OF MINERALIZED NODULES BY BONE DERIVED CELLS-INVITRO - A MODEL OF BONE-FORMATION [J].
BERESFORD, JN ;
GRAVES, SE ;
SMOOTHY, CA .
AMERICAN JOURNAL OF MEDICAL GENETICS, 1993, 45 (02) :163-178
[9]  
BOCK P, 1984, SEMIDUNNSCHNITT, P98
[10]   Human bone cell cultures in biocompatibility testing.: Part I:: osteoblastic differentiation of serially passaged human bone marrow cells cultured in α-MEM and in DMEM [J].
Coelho, MJ ;
Cabral, AT ;
Fernandes, MH .
BIOMATERIALS, 2000, 21 (11) :1087-1094